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Abstract

Background: Triptolide is a diterpene triepoxide from the Chinese medicinal plant Tripterygium wilfordii Hook F., with
known anti-inflammatory, immunosuppressive and anti-cancer properties.

Results: Here we report the expression profile of immune signaling genes modulated by triptolide in LPS induced
mouse macrophages. In an array study triptolide treatment modulated expression of 22.5% of one hundred and ninety
five immune signaling genes that included Toll-like receptors (TLRs). TLRs elicit immune responses through their
coupling with intracellular adaptor molecules, MyD88 and TRIF. Although it is known that triptolide inhibits NFkB
activation and other signaling pathways downstream of TLRs, involvement of TLR cascade in triptolide activity was not
reported. In this study, we show that triptolide suppresses expression of proinflammatory downstream effectors
induced specifically by different TLR agonists. Also, the suppressive effect of triptolide on TLR-induced NFkB activation
was observed when either MyD88 or TRIF was knocked out, confirming that both MyD88 and TRIF mediated NFkB
activation may be inhibited by triptolide. Within the TLR cascade triptolide downregulates TLR4 and TRIF proteins.

Conclusions: This study reveals involvement of TLR signaling in triptolide activity and further increases understanding
of how triptolide activity may downregulate NFkB activation during inflammatory conditions.

Background

Chronic inflammation is an important patho-physiologi-
cal condition impacting various diseases including rheu-
matoid arthritis (RA), atherosclerosis, diabetes, and
cancer. Recent evidence suggests the involvement of Toll-
like receptors (TLRs) in various chronic inflammatory
and autoimmune diseases [1-3]. TLRs belong to the fam-
ily of pathogen-associated molecular pattern recognition
receptors and are vital components of the host's immune
system for sensing dangerous pathogens, and for initiat-
ing inflammatory and immune responses directed against
these pathogens. The mechanism of signal transduction
through TLRs is well characterized [4-11]. There are two
possible routes for mediation of signals received by TLRs
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depending on which of the two adapter molecules
(MyD88 and TRIF) are involved. The importance of
MyD88 and TRIF lies in the finding that each leads to a
distinct profile of immune mediators that in turn deter-
mine the phenotype of the cells that are primarily respon-
sible for the development of adaptive immune responses
[1-4]. TLR4 mediates through both the MyD88 and TRIF
pathways, TLR3 signals through TRIF and all the other
TLRs mediate through MyD88 pathway [5-8]. Character-
ization of cellular responses to various ligands that selec-
tively activate specific TLRs is not only useful in better
understanding of disease pathogenesis but can also
potentially help identify molecular targets by which phar-
macological compounds modulate TLR-mediated signal-
ing pathways and target gene expression.

Triptolide is a biologically active diterpene triepoxide
from a Chinese herb Tripterygium wilfordii Hook F, com-
monly known as thunder god vine. Extracts from this
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plant have been historically used in traditional Chinese
medicine to treat inflammatory and autoimmune dis-
eases such as rheumatoid arthritis, systemic lupus, psori-
atic arthritis and Behcet's disease [12]. Triptolide
inhibited the expression of proinflammatory markers
including COX-2 and iNOS in RAW macrophage [13].
Triptolide suppressed c-jun NH,-terminal kinase (JNK)
phosphorylation, COX-2 expression and PGE2 produc-
tion in microglial cultures treated with lipopolysaccha-
ride [14]. NFkB activation due to inflammatory response
in chronic diseases is well characterized [15]. Existing
reports demonstrate the effect of triptolide on NF«B acti-
vation and target gene expression as well as its effect on
other transcription factors [16]. Although TLRs are
known to impact downstream NFkB activation [17],
effects of triptolide in TLR signaling have not been evalu-
ated. In this study we investigated the effects of triptolide
activity on receptors and target gene expression induced
by activation of TLRs.

Methods

Chemicals and biochemicals

Antibiotics, Dimethyl sulphoxide (DMSO), triptolide
(MW 360.4) and LPS (lipopolysaccharide from E.coli,
serotype 055:B5) were purchased from Sigma chemicals
(St. Louis, MO). Ligands for TLR2 (Zymosan) and TLR3
(Poly I:C) were purchased from Invivogen (San Diego,
CA). Cell culture media were obtained from Invitrogen
Inc. (Carlsbad, CA). Reagents used in quantitative PCR,
including enzymes MyD88 and TRIF pre-designed siRNA
purchased from Ambion (Austin, TX). RAW 264.7 cell
line (ATCC TIB-71) was provided by American Type Cul-
ture Collection (Manassas, VA). The BCA Protein Assay
kit and NE-PER Extraction kit were obtained from Pierce
(Rockford, IL). The ECL Advanced Western blotting
detection Kit chemiluminescence system from Amer-
sham Biosciences (Buckinghamshire, UK). Broad ranger
blotting markers, anti-TLR4 rabbit polyclonal antibody,
anti-actin rabbit polyclonal antibody and Horseradish
peroxidase-conjugated anti-rabbit antibody were pur-
chased from Santa Cruz Biotechnology, Inc. (Santa Cruz,
CA). Anti-TRIF rabbit polyclonal antibody was pur-
chased from Cell Signaling Technology (Beverly, MA)

Macrophage cell culture assay

RAW 264.7 macrophage cells were cultured as described
by Dey et al., 2006 [18]. Briefly, cells were seeded at a den-
sity of 0.4 x 10°cells per well (viable cell counts were car-
ried out by trypan blue staining using a hemocytometer)
in 24-well plates 12 h prior to treatment. The cells were
then treated with triptolide dissolved in DMSO at con-
centration (per ml of cells) of 20 ng, 10 ng, 5 ng and 1 ng
for 2 h before elicitation with bacterial endotoxin LPS
(lipo-polysaccharide from E.coli, serotype 055:B5) at 1
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pg/ml for TLR-4 elicitation, Zymosan at 1 ug/ml for TLR-
2 elicitation and Poly I:C (synthetic analog of dsRNA) at
10 ug/ml for TLR-3 elicitation. The corresponding molar
concentrations of triptolide (MW 360.4) that are used in
Figures 1, 2, 3, 4 and 5 were 55.5 nM, 27.7 nM, 13.8 nM
and 2.7 nM respectively. For each experiment, one posi-
tive control (cells treated with ligands and vehicle) and
one negative control (cells treated with vehicle only) were
included. For RNA extraction, the cells were harvested in
TRIzol after 6 h of ligand stimulation and for protein
expression the cells were harvested after 12 h. Two repli-
cates were made for all the treatments and their controls.
The concentrations of triptolide used were previously
tested to be non-cytotoxic using a MTT assay [13]. The
CCy, (concentration at which 50% of cells remain viable)

of triptolide for macrophages is ~83.2 nM.

MyD88KO and TRIFKO using RNAi

Pre-designed small interfering RNA (siRNA) oligonucle-
otides targeting endogenous MyD88 and TRIF were pur-
chased from Ambion (Austin, TX). The siRNA duplexes
were transfected using lipofectamine 2000 (Invitrogen)
into RAW 264.7 cells following the manufacturer's proto-
col. Briefly, cells were plated at 0.2 x 10° cell/well in a 24-
well plate maintained in Dulbecco's modified Eagle's
medium (DMEM) supplemented with 10% heat-inacti-
vated fetal bovine serum. After 24 h, cells were treated
with 1 pl of 50 uM MyD88-siRNA or TRIF-siRNA in a
transfection mixture containing lipofectamine 2000 and
incubated in 5% CO,, at 37°C. After 24 h of transfection
the medium was changed with 1 ml of fresh DMEM. Two
hours before elicitation with LPS (1 pg/mL), the cells
were treated with predetermined doses of triptolide. For
RNA extraction, the cells were harvested in TRIzol after 6
h of treatment and for protein expression the cells were
harvested after 12 h.

Total RNA extraction, purification, and cDNA synthesis
Total RNA extraction, purification and cDNA synthesis
were performed following procedures described in Dey et
al., 2006 [18].

Quantitative polymerase chain reaction and gene array
qRT-PCR was performed as described by Dey et al., 2006
[18]. Gene-specific primers (synthesized by IDT Inc.,
Coralville, IA) used in the current study are described in
Table 1. For the gene array experiment, PCR-arrays
(APM_025, SABiosciences, MD) were purchased and the
manufacturer's protocol was followed. Relative quantifi-
cation based on SYBR green was used for individual and
gene array experiments.

Immunoblotting analysis of TRIF and TLR4
The cells were lysed using RIPA buffer (Pierce, Rockford,
IL) according to the manufacturer's protocol. Equal
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Table 1: Sequence of primers used for real time RT-PCR.
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Gene symbol* (accession#) Forward primer

Reverse primer

B-actin (NM_007393)
COX-2 (NM_011198)
iNOS (XM_147149)

5'AACCGTGAAAAGATGACCCAGAT3'
5 TGGTGCCTGGTCTGATGATG3'
5'CCCTCCTGATCTTGTGTTGGA3'

5'CACAGCCTGGATGGCTACGT3'
5'GTGGTAACCGCTCAGGTGTTG3'
5'TCAACCCGAGCTCCTGGAAS'

MyD88 (NM_010851) 5TGGCCTTGTTAGACCGTGA3' 5'AAGTATTTCTGGCAGTCCTCCTC3'
TRIF (NM_174989) 5 TGGCAAACACCTTCAAGACA3' 5'GCGCTTTCTTCCAGCGTA3'

CCL3 (NM_011337) 5TGCCCTTGCTGTTCTTCTCT3! 5'GTGGAATCTTCCGGCTGTAG3'
IRGT (NM_008392) 5'GCTTTTGTTAATGGTGTTGCTG3' 5'GGCTTCCGATAGAGCTGTGA3'
TLR2 (NM_011905) 5'GGGGCTTCACTTCTCTGCTT3' 5'AGCATCCTCTGAGATTTGACG3'

TLR3 (NM_126166)
TLR4 (NM_021297)

5'GATACAGGGATTGCACCCATA3'
5'GGACTCTGATCATGGCACTG3'

5'TCCCCCAAAGGAGTACATTAGA3'
5'CTGATCCATGCATTGGTAGGT3'

*Refer to abbreviation list for full gene names

amounts of total cellular protein (20 pg) was quantified
using BCA protein assay kit according to the kit's proto-
col. The samples were resolved by 10% SDS-PAGE under
reducing conditions (100 V, 2 h) and transferred to nitro-
cellulose membranes (50 V, 2 h) in a buffer consisting of
20% v/v methanol, 200 mM Glycine, 25 mM Tris, pH 8.3.
The membrane was blocked for overnight at 4°C and then
incubated with anti-TRIF rabbit polyclonal antibody
(1:1000) or anti-TLR4 rabbit polyclonal antibody (1:1000)
or anti-actin rabbit polyclonal antibody (1:5000) for 2 h at
RT. Horseradish peroxidase-conjugated secondary anti-
rabbit antibody was used and incubated for 1 h at RT.
Immunodetection was performed wusing an ECL
Advanced Western blotting detection Kit chemilumines-
cence system. The autoradiograms were quantified using
scanning densitometry (Total Labs software v 2.01).

Cell fractionation and transactivation of NFkB (p65)

Nuclear extracts were prepared according to the instruc-
tions provided in NE-PER™ Pierce Nuclear and Cytoplas-
mic extraction kit). Cells were collected 45 minutes after
LPS induction (1 pg/ml). A 50 pg amount of nuclear
extracts from macrophage cells were electrophoresed in
12% SDS-PAGE under reducing conditions, transferred
to nitrocellulose membranes and blocked with 5% Non-
fat milk powder in PBS. Membranes were incubated with
rabbit polyclonal antibodies to p65 (1/500) or anti-actin.
Secondary anti-rabbit peroxidase bound antibody was
used. The immunodetection was performed using an
ECL Advanced western blotting detection Kit chemilu-
minescence system. The autoradiograms were quantified
using scanning densitometry (Total Labs software v 2.01).

Statistical analysis
The data are expressed as Mean * Standard Deviation
(SD). Statistical significance for the data for mRNA and

densitometric analysis were calculated using analysis of
variance (ANOVA) and the group means were compared
by the least significant difference test (LSD). The results
were considered statistically significant if p < 0.05.

Results

Gene array data confirmed known and revealed unknown
genes affected by triptolide

Expression of one hundred and ninety five target genes in
response to triptolide treatment were studied by gene
array in LPS stimulated mouse macrophages. The genes
based on their response to LPS stimulation were charac-
terized as LPS-responsive (Table 2) and LPS-nonrespon-
sive genes (Table 3). Among LPS-responsive genes, 42
genes were downregulated (Table a2a) and 2 genes (Table
b2b) were upregulated by triptolide treatment. Fourteen
genes were found to be non-responsive to LPS induction
(Table 3). Of these non-responsive genes, 8 genes were
downregulated (Table a3a) and 6 genes were upregulated
by triptolide treatment (Table b3b). Huang et al. (2006)
reported that 320 genes were upregulated in RAW 264.7
cells in response to LPS treatment but only 32 (10%)
genes were downregulated by triptolide [19]. In our study
that included some overlapping genes with Huang et al
(2006) [19], triptolide down regulated 21% of the LPS-
induced genes and affected a total of 22.5% of LPS-
responsive genes (including down and upregulations) in
RAW macrophages. Triptolide treatment was found to
downregulate the expression of TLRs 1 and 4 (Table a2a),
TLRs 3 and 7 (Table a3a), TNF, IL-6, IL-1, NF«xBI,
MAPK, Rel, Bcl3, COX-2 (Table a2a) and other important
inflammation regulating genes (Tables 2, 3, 4). The gene
array results obtained for COX-2, TNFa, IL1p (data not
shown) and TLR4 were further validated using qRT-PCR.
We further investigated expression of TLR-mediated
genes to understand in greater details the extent of
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Table 2: Fold changes in gene expression in cells treated with triptolide (55.5 nM)+LPS (1 pg/ml) as compared to those

treated with LPS (1 pg/ml) alone.

a) Downregulation of LPS- stimulated genes by triptolide.

Gene Accession No. Gene name Fold change in response to treatment
Symbol LPS* LPS+triptolide
Ccl2 NM_011333 Chemokine (C-C motif) ligand 2 19.90 -11.98
Ccl22 NM_011331 Chemokine (C-C motif) ligand 12 692.18 -8.53
Ccl3 NM_011337 Chemokine (C-C motif) ligand 3 448 -3.82
Ccl5 NM_013653 Chemokine (C-C motif) ligand 5 22.86 -19.05
Ccl7 NM_013654 Chemokine (C-C motif) ligand 7 96.67 -19.73
Ccl9 NM 011338 Chemokine (C-C motif) ligand 9 77.98 -30.74
Cxcl10 NM_021274 Chemokine (C-X-C motif) ligand 10 113.38 -39.18
Cxcl11 NM_019494 Chemokine (C-X-C motif) ligand 11 41.50 -13.01
1o NM_010548 Interleukin 10 55.52 -47.24
I110ra NM_008348 Interleukin 10 receptor, alpha 4,01 -3.21
1113ra1 NM_133990 Interleukin 13 receptor, alpha 1 13.13 -11.17
8 NM_008360 Interleukin 18 17.33 -7.68
1a NM_010554 Interleukin 1 alpha 2360.70 -102.68
b NM 008361 Interleukin 1 beta 1140.14 -55.02
11fé6 NM_ 019450 Interleukin 1 family, member 6 51.09 -39.18
l12rg NM_ 013563 Interleukin 2 receptor, gamma chain 15.73 -5.66
ltgam NM_008401 Integrin alpha M 7.09 -5.91
Itgb2 NM_008404 Integrin beta 2 3.82 -4.63
Spp1 NM_009263 Secreted phosphoprotein 1 5.60 -3.25
Tgfb1 NM_ 011577 Transforming growth factor, beta 1 4.27 -1161.68
Tnf NM_013693 Tumor necrosis factor 58.69 -45.32
Tnfrsf1b NM_011610 Tumor necrosis factor receptor superfamily, 90.82 -16.94
member 1b
Bcl3 NM_033601 B-cell leukemia/lymphoma 3 20.51 -20.30
Crebbp NM_001025432 CREB binding protein 2.92 -433
Csf2 NM_009969 Colony stimulating factor 2 (granulocyte- 116.81 -61.53
macrophage)
Csf3 NM_009971 Colony stimulating factor 3 (granulocyte) 13568.7 -355.41
Gjal NM_010288 Gap junction membrane channel protein alpha 1 465 -6.20
16 NM 031168 Interleukin 6 674.65 -256.59
Nfkb1 NM_008689 Nuclear factor of kappa light chain gene 32.63 -3.37
enhancer in B-cells 1, p105
Nfkbia NM_010907 Nuclear factor of kappa light chain gene 18.87 -2.93
enhancer in B-cells inhibitor, alpha
Rel NM_009044 Reticuloendotheliosis oncogene 114.40 -14.86
Ripk1 NM_009068 Receptor (TNFRSF)-interacting serine-threonine 3.18 -7.80
kinase 1
Tir NM_030682 Toll-like receptor 1 4335 -18.55
Tird NM_021297 Toll-like receptor 4 3.27 -5.40
Tnfaip3 NM_009397 Tumor necrosis factor, alpha-induced protein 3 56.41 -5.15
Cd14 NM_009841 CD14 antigen 4.01 -7.56
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Table 2: Fold changes in gene expression in cells treated with triptolide (55.5 nM)+LPS (1 pg/ml) as compared to those

treated with LPS (1 pg/ml) alone. (Continued)

Cd86 NM_019388 CD86 antigen 4.24 -2.90
Ifnb1 NM_010510 Interferon beta 1, fibroblast 5.56 -7.15
Irf3 NM_ 016849 Interferon regulatory factor 3 3.02 -58.79
Ly86 NM_010745 Lymphocyte antigen 86 5.15 -8.21
Mapk8 NM_016700 Mitogen activated protein kinase 8 5.68 -11.06
Ptgs2 NM_011198 Prostaglandin-endoperoxide synthase 2 566.13 -51.89

b) Upregulation of LPS down regulated genes by triptolide.

Gene Accession No. Gene Name Fold change in response to treatment
symbol

LPS* LPS+triptolide
Smad3 NM 016769 MAD homolog 3 (Drosophila) -13.20 4.02
Mapk8ip3 NM_013931 Mitogen-activated protein kinase 8 interacting -5.19 4.21

protein 3

* Fold changes for LPS treatments were determined by comparing to base level expressions in untreated cells
Positive values (=+3) indicate stimulation while negative values (<-3) represent suppression of gene expression.

involvement of TLR signaling cascade in the activity of
triptolide.

Effect of triptolide on downstream effector expression
induced by TLR ligands

There are three possible routes through which TLR sig-
naling is mediated [5-8]. These routes either involve the
adapter molecule MyD88, TRIF or both. TLR3 signals
through TRIF and all other TLRs mediate through
MyD88 pathway whereas TLR4 utilizes both MyD88 and
TRIF to transduce the signal it receives [5-8]. One of the
important readouts of TLR ligand induction is a robust
pro-inflammatory response such as an upregulated
expression/secretion of chemokines and cytokines. Using
this modulation of chemokines/cytokine expression dur-
ing different ligand induction the response to triptolide
treatment was evaluated. Triptolide inhibited the expres-
sion of COX-2 and iNOS induced by MyD88- specific
ligand - Zymosan (TLR2), TRIF- specific ligand, Poly I:C
(TLR3) and LPS (TLR4) which activates both MyD88 and
TRIF pathways (Figure 1). Downregulation of COX-2 and
iNOS by triptolide [13] along with selected cytokines/
chemokines that are specific to each route of TLR signal-
ing have been used to validate downstream effects of trip-
tolide along the TLR pathway. COX-2 and iNOS
expression is common to both MyD88-dependent and -
independent (TRIF) signaling pathways. The expression
of CCL3 is specific for MyD88-dependent pathway and
expression of IRG-1 is a specific readout of the TRIF-
dependent pathway [20-22]. Triptolide inhibited the
expression of CCL3 in macrophage induced with Zymo-

san (MyD88 specific ligand) and LPS (TLR4 specific but
utilizes both TRIF and MyD88) (Figure 1A and Figure
1C). Triptolide also inhibited the expression of IRG-1 in
macrophages induced with Poly I:C (TRIF specific ligand)
and LPS (Figure 1B and Figure 1C). These results demon-
strate that triptolide inhibits the activation of chemokines
involved in both MyD88 and TRIF dependent pathways.

Effect of triptolide on MyD88KO and TRIFKO in RAW cells
induced with LPS

To further validate the effect of triptolide on inflamma-
tory pathways of MyD88 and TRIF, we evaluated the
effect of triptolide on LPS induced macrophage under the
two following scenarios: (1) MyD88 mediated pathway in
the absence of TRIF regulation and (2) TRIF mediated
pathway in the absence of MyD88 regulation. As both
MyD88 and TRIF signaling pathways lead to NF«B acti-
vation [8], we determined the activity of triptolide on
NEkB translocation to the nucleus (Figure 2). Also,
because COX-2 and iNOS are downstream target genes
regulated by NF«B, their increased expression is an indi-
rect indicator of NFkB activation. To further validate
results of Figure 1, whether or not triptolide modulates
both MyD88 and TRIF mediated signaling pathways, the
activation of NFkB and the expression of COX-2 and
iNOS induced by LPS in MYD88-KO macrophages and
TRIF-KO macrophages were determined. Triptolide sup-
pressed LPS-induced NFxB translocation in a dose
dependent manner as determined by immunoblotting of
the p65 protein in nuclear extracts. We observed that the
incubation of MyD88-KO and TRIF-KO macrophages
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Table 3: Fold changes in gene expression in cells treated with triptolide (55.5 nM) as compared to endogenous expression
levels in untreated cells.

a) Downregulation (<-3) of LPS-non responsive genes by triptolide.

Gene symbol Accession No. Gene Name Fold change in response to
triptolide

Bclé NM_009744 B-cell leukemia/lymphoma 6 -5.36

Cxcr3 NM_009910 Chemokine (C-X-C motif) receptor 3 -7.63

Tnfrsf1a NM_011609 Tumor necrosis factor receptor -5.18
superfamily, member 1a

Eif2ak2 NM_ 011163 Eukaryotic translation initiation factor -4.51
2-alpha kinase 2

TIr3 NM_126166 Toll-like receptor 3 -10.73

Tir7 NM_133211 Toll-like receptor 7 -12.85

Ly96 NM_016923 Lymphocyte antigen 96 -4.28

Map2k4 NM_009157 Mitogen activated protein kinase kinase -3.01

4

b) Upregulation (=+3) of LPS-non responsive genes by triptolide.

Gene symbol Accession No. Gene Name Fold change in response to
triptolide
Ccl25 NM 009138 Chemokine (C-C motif) ligand 25 6.05
Fasl NM_010177 Fas ligand (TNF superfamily, member 6) 115.09
Irf1 NM_008390 Interferon regulatory factor 1 7.60
Mapk3 NM_011952 Mitogen activated protein kinase 3 5.84
Tnfsf14 NM_019418 Tumor necrosis factor (ligand) 17.71
superfamily, member 14
Traf3 NM_011632 Tnf receptor-associated factor 3 3.38

LPS (1 pg/ml) did not have any effect on these genes.

with LPS (1 pg/mL) produced an increase in NF«B trans-
location (p65 subunit) to the nuclear compartment that
was evident at 45 mins of incubation time. Figure 2A, 2B
and 2C show that this translocation process was inhibited
in MyD88-KO, TRIF-KO and Wild-type macrophages by
pretreatment with triptolide in a dose dependent manner.
Similarly, triptolide inhibited the gene expression of
COX-2 and iNOS induced by LPS in MyD88-KO, TRIEF-
KO and Wild-type macrophages in a dose dependent
manner (Figure 3A, 3B and 3C). Together, these results
demonstrate that triptolide suppresses both MyD88 and
TRIF -dependent signaling pathways.

Effect of triptolide activity on protein and mRNA
expression of adaptor molecules and TLR

Triptolide was found to suppress both MyD88 and TRIF-
dependent signaling pathways activated by LPS agoniza-
tion of TLR4. (Figures 2, 3). Therefore, to further charac-

terize the role of triptolide in the signaling events
triggered by LPS in macrophages upstream of NF«B, we
studied the expression of adapter molecules TRIF and
MyD88 as well as that of TLR4 receptor at mRNA and
protein levels. Triptolide treatment suppressed the
mRNA and protein levels of LPS-induced TLR4 (Figure
5) and TRIF (Figure 4) expression but not MyD88 (data
not shown). Suppression of poly I:C induced TLR3
mRNA expression by triptolide, the only TRIF specific
toll-like receptor, has not been observed by qRT-PCR
(data not shown). Together these observations suggest
that triptolide inhibition of NFkB may be directed from
the receptor level for MyD88 pathway and from the
adapter level for TRIF pathway.

Discussion
Past studies have demonstrated that triptolide can induce
anti-inflammatory responses in several assay systems
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Table 4: Fold changes in gene expression in cells treated with LPS (1 pg/ml) as compared to endogenous expression levels

in untreated cells.

Gene symbol Accession No.

Gene name

Fold change in response to LPS

c3 NM_009778 Complement component 3 3.02

15 NM_008357 Interleukin 15 6.39

Ltb NM 008518 Lymphotoxin B 4.48

Atf1 NM_007497 Activating transcription factor 1 4.43

Bcl10 NM_009740 B-cell leukemia/lymphoma 10 22.13

Cflar NM_009805 CASP8 and FADD-like apoptosis 14.01
regulator

Edg2 NM 010336 Endothelial differentiation, 6.49
lysophosphatidic acid G-protein-
coupled receptor, 2

Relb NM_009046 Avian reticuloendotheliosis viral (v-rel) 21.38
oncogene related B

Stat1 NM_009283 Signal transducer and activator of 5.89
transcription 1

Cd40 NM_ 011611 Cluster of Differentiation 40 112.83

Nr2c2 NM_011630 Nuclear receptor subfamily 2, group C, -4.07
member 2

Peli1 NM_030015 Pellino 1 5.48

Triptolide (55.5 nM) did not have any effect on these genes.

[14,23]. However, the direct molecular targets of trip-
tolide have remained elusive. In our previous report, we
showed that triptolide significantly inhibited the secre-
tion of inflammatory cytokines that occurred with RAW
264.7 cells when stimulated with LPS [13]. Subsequently,
we performed a gene array analysis (Tables 2, 3, 4) to elu-
cidate additional members of the immune signaling cas-
cade that could be potential targets of triptolide activity.
The results of this analysis showed that 44 genes, which
were known to regulate inflammation were differentially
expressed in stimulated RAW 264.7 cells following trip-
tolide treatment. These 44 genes represented key
immune signaling pathways such as TLR signaling,
MAPK signaling, Jak-STAT signaling and cytokine-
cytokine receptor interaction. In our present study we
undertook further investigation on cellular mechanism of
triptolide activity that focused on TLRs, given their
upstream location in the immune signaling cascade and
their increasingly recognized importance in inflamma-
tory and autoimmune diseases [24].

LPS induces TLR4 dimerization to trigger the activa-
tion of downstream signaling pathways [25,26]. This
receptor dimerization activates transcription factor
NFkB, leading to the induction of inflammatory gene
products such as COX-2 and iNOS [25,26]. Many studies
have demonstrated that triptolide and its synthetic deriv-
atives inhibited NF«B activation induced by TLR4 agonist

LPS [13,14,27] but effect of triptolide on any TLR expres-
sion was never reported. The present study shows that
triptolide suppressed ligand (LPS)-induced expression of
TLR4 at mRNA and protein levels (Figure 5). We also
observed for the first time that triptolide suppressed
Poly(I:C) (TLR3 agonist) and Zymosan (TLR2 agonist)
induced expression of COX-2 and iNOS (Figure 1A, B).
These observations suggest that triptolide may offer pro-
tection against wide range of infections that occurs by
different TLR inductions.

The TLR-ligand activities are transduced through spe-
cific intracellular adaptor molecules, most notably
MyD88 and TRIF. The importance of MyD88 and TRIF
lies in finding that each leads to a distinct profile of
immune mediators that in turn determines the pheno-
type of the cells that primarily are responsible for the
development of adaptive immune responses [1-4]. By
studying the expression of well-characterized cytokine/
chemokine target genes downstream of MyD88 (e.g.,
CCL3) and TRIF (e.g., IRG-1) [21,22] we demonstrated
differential regulation exerted by triptolide in ligand-
induced 264.7 RAW macrophages. We observed that
triptolide downregulated the expression of both MyD88-
dependent cytokine such as CCL3 induced by MyD88-
dependent ligands (Zymosan/TLR2 ligand, LPS/TLR4)
and TRIF-dependent cytokine IRG-1 (Poly I:C/TLR3 and
LPS/TLR4) in a concentration dependent manner (Figure
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Figure 1 Effect of triptolide on gene expression of COX-2, iNOS and chemokines in response to various TLR ligand activation in RAW mac-
rophages. The effect of triptolide treatment (three replicates) on a specific gene expression was measured by the mRNA quantity relative to the re-
sponse to ligand activation only (positive control) that was normalized to a value of 1.00; lower values represent greater inhibitory effects with 0.00
corresponding to a complete inhibition of the induced gene expression. The value of the negative control (no induction) was normalized to 0.00. Val-
ues are mean + S.D. %, p < 0.05; (post-ANOVA comparison with Ligand-treated positive control). A. Effect of triptolide on mRNA levels of COX-2, iINOS
and CCL3 following zymosan stimulation. B. Effect of triptolide on mRNA levels of COX-2, iINOS, and IRG-1 following Poly I.C stimulation. C. Effect of
triptolide on MRNA levels of COX-2,iNOS, CCL3 and IRG-1 following LPS stimulation.
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Figure 2 Effect of triptolide on NFKB p65 nuclear translocation. Representative immunoblots of NFkB (p65). $-actin used as internal control. The
protein expression was measured by densitometric analysis (Total Labs software v 2.01). The untreated control T-was normalized to a value of 100.
Each value represents mean + SD of three experiments performed in triplicate. A. Effect of triptolide on NFkB translocation in MyD88KO RAW mac-
rophages B. Effect of triptolide on NFkB translocation in TRIFKO RAW macrophages C. Effect of triptolide on NFkB translocation in Wild-type RAW mac-
rophages. * Significantly different from control (p < 0.05) ANOVA followed by LSD

1A, 1B and 1C). To further confirm that both MyD88 and MyD88 KO (when only TRIF is present) and TRIF-KO
TRIF mediated signaling are involved in triptolide activ-  (when only MyD88 is present) macrophages as well as in
ity, we showed that triptolide suppressed the NFkB trans-  wild-type macrophages induced with TLR specific ligand,
location (p65 molecule) to the nucleus and also the LPS (Figure 2 and 3). These results show that inhibition
downstream expression of COX-2 and iNOS mRNA in  of NF«B activation and COX-2 and iNOS expression by
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Figure 3 Effect of triptolide on gene expression of COX-2 and iNOS (mean * S.D). The expression of specific genes was measured by the mRNA
quantity relative to the response to LPS activation (positive control) that was normalized to a value of 1.00; lower values represent greater inhibitory
effects with 0.00 corresponding to a complete inhibition of the induced gene expression. The value of the negative control (no induction) was nor-
malized to 0.00. A. Expression of COX-2 and iNOS genes in MyD88KO macrophages; B. Expression of COX-2 and iNOS genes in TRIFKO macrophages;
C. Expression of COX-2 and iNOS genes in WT macrophages. * Significantly different from control (p < 0.05) ANOVA followed by LSD.
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B. TRIF Protein expression

C. Densitometric Analysis

1000 1

800 1

600 1

400 1

200 1

!

TRIF

triptolide could be achieved in presence of MyD88 or
TRIF alone or when both are present as in wild type mac-
rophages. These results also suggest that triptolide can
block both MyD88- and TRIF-dependent pathways that
lead to NF«B transactivation. Since MyD88 and TRIF are
the only adapters exclusively mediating all TLR signaling,
it is possible that triptolide may suppress wide-range of
TLR signaling through other TLRs in addition to TLR4.
Although in the current study we focused on TLR4 path-
way, our gene array data (Tables a2a and a3a) as well as
the observations presented in Figure 1A and 1B may sup-
port the suggestion that triptolide has activities against
other TLRs. When the changes in the expression of TRIF
and MyD88 in response to triptolide were tested (Figure
4), triptolide inhibited the mRNA and protein expression
of TRIF, but not MyD88 in a dose dependent manner. A
study by Yamamoto et al. (2003) [28] using TRIF knock-

out mice has revealed that TRIF is physiologically essen-
tial for TLR-3 mediated signaling and that TRIF is
involved in the LPS-induced MyD88-independent path-
way.

Triptolide blocked early signaling pathways of TLRs
suggesting that its inhibitory action was at the receptor
and adapter molecule levels. Thus, a direct interaction of
triptolide with TLR4 may be hypothesized. This study
suggests that plant compounds, such as triptolide, can
modulate TLR-mediated inflammatory responses and
can reduce the risk of chronic diseases, associated with
exaggerated TLR activation. Macrophages are the key
antigen presenting cells in the pathogenesis of RA and
involvement of TLR4 has been shown to play role in joint
destruction in RA [29]. Therefore, the present study
showing interaction of triptolide with components of
TLR signaling, such as TLR4, are particularly relevant
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Figure 5 Effect of triptolide on mRNA and protein expression of TLR 4 (mean + S.D.). The mRNA expression of TLR 4 was measured by the mRNA
quantity relative to the response to LPS activation (positive control) that was normalized to a value of 1.00; lower values represent greater inhibitory

effects with 0.00 corresponding to a complete inhibition of the induced gene expression. The value of negative control (no induction) was normalized
t0 0.00. A. mRNA expression of TLR 4; B. Protein expression of TLR 4; C. Densitometric analysis for protein expression. * Significantly different from con-

trol (p < 0.05) ANOVA followed by LSD

and support the recent promise shown in clinics against
RA by botanical extracts containing triptolide [30,31].

Conclusions

The results from the present study suggest that the sup-
pression of agonist-induced NFkB activation and
chemokine expression by triptolide is mediated by target-
ing the early signaling of TLRs, particularly that of TLR4
in RAW 264.7 cells. Triptolide downregulated the expres-
sion of TLR4 proteins and that of TRIF adapter proteins
in the MyD88-independent pathway of TLR4. In addition
gene expression profiles in response to triptolide treat-
ment in stimulated macrophages suggest that triptolide
may have multiple cellular targets contributing to its
strong anti-inflammatory and immune suppressive prop-
erties.
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