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Abstract

Background: Identification of the target proteins of bioactive compounds is critical for elucidating the mode of
action; however, target identification has been difficult in general, mostly due to the low sensitivity of detection
using affinity chromatography followed by CBB staining and MS/MS analysis.

Results: We applied our protocol of predicting target proteins combining in silico screening and experimental
verification for incednine, which inhibits the anti-apoptotic function of Bcl-xL by an unknown mechanism. One
hundred eighty-two target protein candidates were computationally predicted to bind to incednine by the
statistical prediction method, and the predictions were verified by in vitro binding of incednine to seven proteins,
whose expression can be confirmed in our cell system.
As a result, 40% accuracy of the computational predictions was achieved successfully, and we newly found 3
incednine-binding proteins.

Conclusions: This study revealed that our proposed protocol of predicting target protein combining in silico
screening and experimental verification is useful, and provides new insight into a strategy for identifying target
proteins of small molecules.
Background
To understand complex cell systems, functional analysis
of proteins has become the main focus of growing re-
search fields of biology in the post-genome era; however,
the roles of many proteins in cellular events remain to
be elucidated. Among various methods to elucidate pro-
tein functions, the approach of chemical genetics is not-
able, with small molecular compounds used as probes to
elucidate protein functions within signal pathways [1,2].
Indeed, several bioactive compounds have led to break-
throughs in understanding the functional roles of pro-
teins [3-11]; however, one significant hurdle to
developing new chemical probes of biological systems is
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identifying the target proteins of bioactive compounds,
discovered using cell-based small-molecule screening.
A variety of methods and technologies for identifying

target proteins have been reported [12]. Among them, af-
finity chromatography is often used for identifying bio-
logical targets of multiple small molecules of interest;
however, it is usually very difficult to identify compound-
targeted protein with low expression because of the low
sensitivity of detection using coomassie brilliant blue
(CBB) staining and MS/MS analysis. Thus, target identifi-
cation of small molecules using affinity chromatography is
severely limited. To overcome the limitations of affinity
chromatography, we propose a new protocol combining
in silico screening and experimental verification for identi-
fication of target proteins.
In our previous work, we developed an in-silico

screening system, called “COPICAT” (Comprehensive
Predictor of Interactions between Chemical compounds
And Target proteins), to predict the comprehensive
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interaction between small molecules and target proteins
[13]. If a target protein is input in the system, a list of
chemical compounds which are likely to interact with
the protein is predicted. In our previous work, several
potential ligands for the androgen receptor were pre-
dicted by this system, these predictions were experimen-
tally verified, and a novel antagonist was found [14]. On
the other hand, if a chemical compound is input in the
system, a list of proteins which are likely to interact with
the compound is predicted by the system.
Previously, we isolated the natural product incednine

from the fermentation broth of Streptomyces sp. ML694-
90F3, which consists of a novel skeletal structure, enol-
ether amide in the 24-membered macrolactam core, with
two aminosugars. In addition, it was reported that inced-
nine induced apoptosis in Bcl-xL-overexpressing human
small cell lung carcinoma Ms-1 cells when combined with
several anti-tumor drugs including adriamycin, camptothe-
cin, cisplatin, inostamycin, taxol, and vinblastine [15]. Be-
cause this compound inhibits the anti-apoptotic function of
Bcl-2/Bcl-xL without affecting its binding to pro-apoptotic
Bcl-2 family proteins, it may target other proteins asso-
ciated with the Bcl-2/Bcl-xL-regulated apoptotic pathway.
To address the mode of action of incednine underlying its
interesting function, we first synthesized affinity-tagged
incednine which is biologically active (data not shown), and
proteins bound to incednine were separated by SDS-PAGE
followed by CBB staining, and each protein band was dir-
ectly identified using liquid chromatography-tandem mass
(LC-MS/MS) spectrometry analysis. Fifty-three proteins
were identified as listed in Table 1, and some of which, such
as eukaryotic initiation factor 4A3(eIF4A3), prolyl 4-
hydroxylase, beta subunit (PDI), heat shock protein 70
(HSP70), and protein phosphatase 2A (PP2A) were
reported to relate to cancer cell survival[16-19]. Therefore
these were knocked down by siRNA or inhibited by a spe-
cific inhibitor, and assessed for their ability to modulate
Bcl-2/Bcl-xL anti-apoptotic function, as does incednine.
However, the candidate proteins tested did not appear to
be the target responsible for modulating Bcl-2/Bcl-xL anti-
apoptotic function (Additional file 1). Therefore, the target
protein of incednine responsible for modulating Bcl-2/Bcl-
xL anti-apoptotic function has not yet been determined,
and further candidate proteins as targets of incednine are
expected to emerge.
In this context, we propose a new protocol combining

in silico screening and experimental verification for the
identification of target proteins. We first predicted the
candidate proteins likely binding to the input compound
by applying the COPICAT system, and then employed
western blotting to detect the binding of predicted pro-
teins to the input compound. This method solves the
problem of the low sensitivity of the traditional method
(as illustrated in Figure 1).
Results
Computational prediction of target proteins for incednine
We set the chemical compound “incednine” as the bind-
ing ligand, and candidate proteins for the targets of
incednine were computationally predicted from the
KEGG database by using the statistical prediction
method for protein-chemical interaction. The training
dataset of protein-chemical interactions to construct the
SVM-based statistical learning model was collected from
the approved DrugCards data in the DrugBank database
[20], and 53 interactions with incednine obtained from
our previous binding experiments using affinity chroma-
tography (see Table 1 and Methods) because the predic-
tion accuracy was increased when more training samples
of protein-chemical interactions were given to the SVM-
based statistical learning model. Among 24,245 human
proteins in the KEGG repository, 182 proteins were
newly predicted as positive, that is, to interact with
incednine with high probability greater than the 0.5
threshold (the default threshold value).

Clustering of computationally predicted proteins
The 182 proteins that were computationally predicted to
bind to incednine were clustered by the hierarchical
clustering method using 199-dimentional feature vector
that was used for encoding amino acid sequences to
construct the SVM-based statistical learning model (See
Methods section for the details). Note that the similarity
based on this 199-dimentional feature vector is different
from the sequence similarity, and this similarity measure
based on the 199-dimentional vector was proven to
work well for protein-chemical interaction predictions in
our previous work [13]. For example, 5HTT and AR α-
1A showed only about 10% sequence similarity although
both were reported to interact with the MDMA drug
and successfully predicted by our SVM-based statistical
learning method. A cutoff threshold on the constructed
clustering tree was determined so that the proteins were
clustered into 11 clusters and each cluster had a statisti-
cally significant number of members. The proteins pre-
dicted to bind to incednine are listed in Additional file 2.

Experimental verification
Next, to examine whether incednine can bind to the
proteins, an in vitro biotinylated incednine pull-down
assay using the lysate of Bcl-xL expressing Ms-1 cells
was performed. We tested 16 proteins as pilot experi-
ments, which are selected from each cluster by one or
two based on antibody availability. Negative candidates
that were predicted not to bind to incednine were
extracted for experimental verification. These proteins,
positive candidates and negative candidates, are listed in
Table 2. Among positive candidate proteins, 2 positive
candidates PIK3CG and ACACA were found to bind to



Table 1 List of proteins identified to bind to incednine in our previous binding experiments

Protein Uniprot ID Kegg ID

poly 4- hydroxylase, beta submit P07237 5034

N-acylaminoacyl peptide hydrolase P13798 327

Heat shock protein 70 P08107 3303/3304

Protein Phosphatase A2 P67775 5515

Similar to DNA damage-binding protein 1 Q16531 1642

Deoxyhypusin synthase isoform alpha P49366 1725

Methionine adenosyltransferse alpha/beta P31153/Q00266/Q9NZL9 4144/4143/27430

4-alpha-glucanotransferse P35573 178

Actin alpha 4 O43707 81

Eukaryotic Initiation factor 4A3 P38919 9775

Deoxycytidine kinase P27707 1633

ATP synthase H+ transporting, mitochondrial F1complex, alpha P25705 498

prohibitin P35232 5245

proteasome alpha 7subuit O14818 5688

proteasome(prosome,macropain) subunit alpha type 8 Q8TAA3 143471

centaurin,beta 2 Q15057 23527

heterogeneous nuclear ribonucleoprotein A/B Q99729 3182

heterogeneous nuclear ribonucleoprotein K P61978 3190

heterogeneous nuclear ribonucleoprotein D Q14103 3184

heterogeneous nuclear ribonucleoprotein A2/B1 P22626 3181

heterogeneous nuclear ribonucleoprotein A1 P09651 3178

heterogeneous nuclear ribonucleoprotein M P52272 4670

small nuclear ribonucleoprotein polypeptide D2 family P62316 6633

mitochondrial riblosomal protein L2 Q5T653 51069

mitochondrial riblosomal protein L20 Q9BYC9 55052

mitochondrial riblosomal protein L3 Q6IBT2 11222

mitochondrial riblosomal protein L40 Q9NQ50 64976

mitochondrial riblosomal protein L46 B2RD75 26589

mitochondrial riblosomal protein L49 B2R4G6 740

mitochondrial riblosomal protein L1 A6NG03 65008

mitochondrial riblosomal protein L37 Q9BZE1 51253

small nuclear ribonucleoprotein-assosiated protein B and B’ P14678 6628

cAMP-dependent protein kinase, regulatory subunit alpha 1 P10644 5573

phosphoribosyl pyrophosphate synthetase-associated protein 1 B2R6M4 5635

peptidylprolyl isomerase-like 2 Q13356 23759

thymoprotein isoform beta, gamma P42167 7112

fructose-bisphosphate aldolase A P04075 226

brain creatine kinase P12277 1152

enolase 1 P06733 2023

Ewing sarcoma breakpoint region 1 Q5THL0 2130

fusion(involved in t(12;16) in malignant liposarcoma) Q6IBQ5 2521

GDP dissociation inhibitor 2 Q5SX88 2665

nucleosome assembly protein 1-like 1 P55209 4673

nucleosome assembly protein 1-like 4 Q99733 4676
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Table 1 List of proteins identified to bind to incednine in our previous binding experiments (Continued)

phosphoglycerate dehydrogenase O43175 26227

triosephosphate isomerase 1 P60174 7167

clathrin heavy chain 1 Q00610 1213

clathrin heavy poly peptide -like 1 P53675 8218

glutamyl-prolyl tRNA synthetase P07814 2058

retinoblastoma binding protein 7 Q16576 5931

retinoblastoma binding protein 4 Q09028 5928

tripartite motif-containing 28 protein Q13263 10155

high glucose-regulated protein 8 Q9Y5A9 51441
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incednine, and 5 positive candidates DAPK1, PIK3C2B,
PIP5K3, CHD4, GTF2IRD2 did not bind to incednine.
Among negative candidate proteins, 2 negative candi-
dates BECN1 and KIF5B did not bind to incednine, and
1 negative candidate PARP1 did bind to incednine
(Figure 2). On the other hand, ITPR1, PARP14, PLCB1,
KIF1A, KIF21B, and RGPD5, listed as positive candi-
dates in Table 2, were not well expressed and were not
detected in Bcl-xL-expressing Ms-1 cells; therefore, ac-
curacy of 40% (4/10), sensitivity of 66.7% (2/3) and pre-
cision of 28.6% (2/7) were achieved.

Discussion
For target identification using affinity chromatography, con-
ventional method requires multiple steps as follows; SDS-
PAGE, CBB staining, excision of gel, destaining, reduction,
trypsinization, and application to LC-MS/MS system (7
steps); these steps can be cumbersome, time-consuming
 MS/MS analysis

Separation by SDS-PAGE 

Extraction of candidate 
proteins using affinity beads

Determine amino acid sequence

Existing protocol

cut the target band

Protocols for identifica

Figure 1 Schematic illustration of our protocol combining in silico scr
protein.
and require expensive installation. Furthermore, CBB stain-
ing used in conventional method can detect proteins over
nanogram order. In contrast, our proposed protocol for
predicting target protein allows us to use western blotting
to detect proteins in picogram order. Indeed, we found two
incednine-binding proteins by this prediction. Additionally,
we can enhance the precision of COPICAT by feeding back
the experimental results to the system.
In this work, PIK3CG, PARP1, and ACACA were

revealed to bind to incednine by applying our protocol
to identify potential target proteins of chemical com-
pounds. These proteins are potential targets of incednine
because it has been reported that these proteins are
related to cancer survival and drug resistance, as follows.
PI3KCG encodes p110 catalytic subunit isoform p110γ

and heterodimerizes with regulatory subunit p101, com-
posing class IB PI3K in the PI3K family [21,22]. Al-
though PIK3CG and PIK3C2B are distant homologous
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Table 2 Representative proteins selected from each
cluster and negative candidates for experimental
verification

Cluster
No.

Representative Protein

1 ITPR1 (inositol 1,4,5-triphosphate receptor, type 1)

2 DAPK1 (death-associated protein kinase 1)

3 PIK3CG (phosphoinositide-3-kinase, catalytic, gamma
polypeptide), PIK3C2B

(phosphoinositide-3-kinase, class 2, beta polypeptide)

4 PARP14 (poly (ADP-ribose) polymerase family, member 14)

5 PIP5K3 (phosphatidylinositol-3-phosphate/phosphatidylinositol
5-kinase, type III)

6 PLCB1 (phospholipase C, beta 1)

7 CHD4 (chromodomain helicase DNA binding protein 4)

8 KIF1A (kinesin family member 1A), KIF21B (kinesin family
member 21B)

9 ACACA (acetyl-Coenzyme A carboxylase alpha)

10 GTF2IRD2 (GTF2I repeat domain containing 2)

11 RGPD5 (RANBP2-like and GRIP domain-containing protein 5)

Negative Proteins predicted not to bind to incednine

1 BECN1 (Beclin-1)

2 PARP1 (poly (ADP-ribose) polymerase family, member 1)

3 KIF5B (kinesin family member 5B)
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with 20% sequence identity, incednine selectively binds
to PIK3CG but not PIK3C2B (Figure 2). In contrast to
class IA, class IB PI3K acts downstream of G-protein
Figure 2 Experimental verification by in vitro biotinylated incednine p
incubated with biotin (Biotin) or biotinylated incednine (BI) and avidin bea
eluted with 2 mM biotin. The eluted proteins were subjected to western b
proteins which were predicted to bind to incednine, and “Negative candid
coupled receptors (GPCR). It has been reported that
p110γ was upregulated and activated by the chimeric
oncogene Bcr-Abl expression to contribute to cell prolif-
eration and drug resistance in chronic myelogenous
leukemia [23], and was found to be highly and specific-
ally expressed among the PI3K family in human pancre-
atic cancer [24], suggesting that class IB PI3K might
relate to cell survival and drug resistance. Product of en-
zymatic activation of class IB PI3K as class IA,
phosphatidylinositol-3,4,5-trisphosphate, makes BAD
dissociate from Bcl-xL and promotes cell survival via
Akt activation [22]. Therefore class IB PI3K might con-
tribute cell survival in Bcl-xL-overexpressing cells.
PARP1 is a member of the PARP protein superfamily

that catalyzes the polymerization of ADP-ribose moieties
onto target proteins, using NAD+ as a substrate and re-
leasing nicotine amide in the process [25]. PARP1 activ-
ity is important for the regulation of homeostasis and
the maintenance of genomic stability, participating in
DNA repair, the regulation of transcription, DNA repli-
cation, cell differentiation, proliferation and cell death
[26-28]. Many in vitro and in vivo experiments demon-
strated that inhibition of PARP1 potentiates the cytotox-
icity of anti-cancer drugs and ionizing radiation [29-32].
Therefore, incednine could bind to PARP1 and could
function as antagonist of anti-apoptotic PARP1 protein.
Alternatively, PARP1 is emerging as an important activa-
tor of caspase-independent cell death. It has been previ-
ously reported that PARP1 mediates the release of
apoptosis-inducing factor (AIF), one of the initiators of
ull-down assay. Lysates from Ms-1 overexpressing Bcl-xL were
ds for 3 h. The beads were washed, and co-precipitated proteins were
lotting using the indicated antibodies. “Positive candidates” means
ates” means proteins which were predicted not to bind to incednine.
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caspase-independent cell death, possibly due to enzym-
atic over-activation [33-35]. We also observed that co-
treatment of Bcl-xL-overexpressing Ms-1 cells with
incednine and ant-tumor drugs induced AIF release and
subsequent caspase-independent cell death (unpublished
data); therefore, we can not exclude the possibility that
incednine binds to PARP1 and functions as PARP1
agonist by accerelating AIF release.
However, the most likely candidate of an incednine

target protein is ACACA (acetyl-CoA carboxylase-α),
which was classified in cluster 9. ACACA is the rate-
limiting enzyme for long-chain fatty acid synthesis that
catalyzes the ATP-dependent carboxylation of acetyl-
CoA to malonyl-CoA, playing a critical role in cellular
energy storage and lipid synthesis [36]. There is strong
evidence that cancer cell proliferation and survival are
dependent on de novo fatty acid synthesis [37-40]. Add-
itionally, ACACA is upregulated in multiple types of
human cancers [41,42]; therefore, ACACA may also
contribute to cell survival in Bcl-xL-overexpressing
tumor cells. Indeed, our preliminary experiments sug-
gested that chemical inhibition of ACACA using TOFA
(5-tetradecyloxy-2-furoic acid, ACACA antagonist) or
small interfering RNA-mediated ACACA silencing
results in the induction of apoptosis in Bcl-xL-
overexpressing human small cell lung carcinoma Ms-1
cells when combined with anti-tumor drugs as does
incednine (unpublished observation), suggesting that
ACACA might be a molecular target of incednine. The
possibility that incednine targets ACACA is being ac-
tively investigated.
While our experimental verification implied the rela-

tively low precision value 28.6% (2/7), new detections of
two incednine-binding proteins in addition to previously
identified 53 proteins are significant. On the other hand,
while we selected 7 candidates by clustering 182 pre-
dicted proteins for experimental verification, more com-
prehensive verification experiments for the 182
predicted proteins are needed.
The application of our method to incednine resulted

in 28.6% (2/7) precision according to in vitro pull-down
assay. However, this relatively low precision value does
not represent the true statistical significance of the
method and is not comparable to the benchmark perfor-
mances (including 98.4% precision) by 10-fold cross-
validation for COPICAT system.
This 28.6% precision can be evaluated by using the fol-

lowing P-value.

P−value ¼ ∑
t

x¼p

MCx� N−Mð ÞC t−xð Þ
NCt

Here, N is the number of human proteins, M is the
number of proteins potentially binding to the incednine,
t is the number of tested proteins, and p is the number
of true positives. With N =24,245, which is the number
of human proteins in the KEGG repository, and M=N×
1%≒243, which is based on the overestimated assump-
tion that 1% of all proteins could be regarded as poten-
tial binding proteins for the incednine. This P-value
defines the probability that the prediction precision can
be obtained by random selection of proteins. Then, P-
value of 0.002 was obtained for the prediction precision
28.6%. This small P-value means that 28.6% (2/7) preci-
sion can be obtained with very small chance by random
selection, and therefore, this small P-value proves the
validity of our method.

Conclusions
Although further study is required for complete deter-
mination of the target protein of incednine, this study
demonstrated that our proposed protocol of predicting
target protein combining in silico screening and experi-
mental verification is useful, and provides new insight
into a strategy for identifying target proteins of small
molecules.

Methods
Training datasets
The DrugBank dataset was constructed from Approved
DrugCards data, which were downloaded from the
DrugBank database [20]. These data consist of 964
approved drugs and their 456 associated target proteins,
constituting 1,731 interacting pairs or positives. Add-
itional data about 53 interactions with incednine, listed
in Table 1, were obtained from our previous binding
experiments.

Feature vectors
An amino acid sequence of protein is divided into tri-
mers (three amino acid residues), and all of the 8,000 tri-
mers are clustered into 199 groups according to
physical-chemical properties. Then, an amino acid se-
quence is converted to a 199-dimensional feature vector
based on the frequencies of 199 clusters (See for [13] the
details of this procedure). A chemical compound is also
converted to another feature vector of 199 dimension
representing substructure statistics extracted from the
structural formula of a chemical compound. The size of
the dimensions, that is, 199 dimensions, was determined
based on the variance of each dimension. The top 199
dimensions with significantly diverse variances in statis-
tical classification were selected.

Statistical prediction method for protein-chemical
interaction
We developed a comprehensively applicable statistical
prediction method for interactions between any proteins
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and chemical compounds, which requires only protein
sequence data and chemical structure data and utilizes
the statistical learning method of Support Vector
Machines (SVM)[13,14].
We consider the problem as the binary classification

of protein-chemical pairs whose abstractive identities
are represented numerically by the 199 dimensional
feature vectors defined above. We obtained a “posi-
tive” sample set, i.e., a set of protein-chemical pairs
that have been proven to interact with each other via
biological assays, from the DrugBank database [20].
Along with the positive sample set, SVM-based classi-
fiers require a “negative” sample set, i.e., a set of
protein-chemical pairs that do not interact with each
other. Such a negative sample set can be extracted
randomly from the whole complement set of the
positive sample set. Though we used random pairs of
drugs and proteins as negative samples in construct-
ing a model, the lack of reliable negative samples is
always a problem when applying the statistical learn-
ing methods. In our current study, it is assumed that
drugs in the DrugBank dataset rarely interact with
proteins other than their known targets because they
are approved drugs. Using the resultant positive and
negative protein-chemical pair sets, we trained two-
layer SVMs. First, we trained each multiple first-layer
SVM with small sample sets designed with different
criteria. Next, using another larger sample set, we
trained a second-layer SVM whose input is a set of
probabilities output from the firstlayer SVMs. The
prediction performances were evaluated by 10-fold
cross-validation using the DrugBank dataset. The sen-
sitivity, specificity, precision, and accuracy were 0.954,
0.999, 0.984, and 0.997, respectively, in cross-
validation. The details of the algorithms and their
prediction accuracy are described in our previous
reports [13,14].

Support vector machines
Given n samples, each of which has an m-dimensional
feature vector xi ¼ x1i ;…; xmi

� �� �
and one of two classes,

such as binding and non-binding y∈ 1;−1f gð Þ , an SVM
produces the classifier

f xð Þ ¼ sign ∑
n

i¼1
αiyiK xi; xð Þ þ b

� �
;

where x is any new object which needs to be classified,
K (�,�) is a kernel function which indicates that the simi-
larity between two vectors and (α1,⋯,αn) are the learned
parameters. The RBF kernel K S1; S2ð Þ ¼ exp −γ∥S1−S2∥ð Þ
was utilized for the SVM classifier. In our study, the
LIBSVM program [43] was employed to construct the
SVM model.
Cell culture
Bcl-xL-overexpressing human SCLC Ms-1 cells [15]
were maintained in Rosewell Park Memorial Institute
media (Nissui, Japan) supplemented with 5% fetal bovine
serum, 100 U/ml penicillin G, and 0.1 mg/mL kanamy-
cin at 37°C in a humidified 5% CO2 atmosphere.

Antibodies
Mouse monoclonal anti-DAPK1 (DAPK-55), rabbit mono-
clonal anti-PIK3CG (Y388), rabbit monoclonal anti-
ACACA (EP687Y), mouse monoclonal anti-PIK3C2B,
rabbit polyclonal anti-ITPR1, mouse monoclonal anti-
PIP5K3, mouse monoclonal anti-CHD4, mouse polyclonal
anti-GTF2IRD2, mouse polyclonal anti-PLCB1 antibodies
were purchased from Abcam (Cambridge, MA). Rabbit
polyclonal anti-KIF21B and mouse monoclonal anti-
KIF5B (clone H2) antibodies were purchased from Milli-
pore (Bedford, MA). Goat polyclonal anti-PARP14 and
goat polyclonal anti-KIF1A were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA). Mouse monoclonal
anti-Beclin (clone 20) antibody was purchased from BD
Transduction Laboratories (San Diego, CA). Rabbit poly-
clonal anti-PARP1 antibody was purchased from Cell Sig-
naling Technology (Beverly, MA). Rabbit polyclonal anti-
RGPD5 antibody was purchased from Lifespan Bios-
ciences (Seattle, WA). Mouse monoclonal anti-Flag (M2)
antibody was purchased form Sigma (St. Louis, MO).
Horseradish peroxidase-conjugated anti-mouse IgG

and anti-rabbit IgG secondary antibodies were purchased
from GE Healthcare (Little Chalfont, UK). Horseradish
peroxidase-conjugated anti-goat IgG was purchased from
Santa Cruz Biotechnology.

Western blotting
Cell lysates were separated by SDS-PAGE and trans-
ferred to a PVDF membrane (Millipore) by electroblot-
ting. After the membranes had been incubated with
primary and secondary antibodies, the immune com-
plexes were detected with an Immobilon Western kit
(Millipore), and luminescence was detected with a LAS-
1000 mini (Fujifilm, Tokyo, Japan).

Preparation of incednine and biotinylated incednine
Incednine was isolated from the culture broth of Strepto-
myces sp. ML694-90F3 [15]. To obtain biotinylated
incednine (see Additional file 3), incednine (137.0 mg)
and the amine-reactive biotin-X (100.0 mg; Invitrogen)
were dissolved in 13.0 mL CHCl3:MeOH (10:1). After
stirring at 40°C for 20 h, the reaction mixture was con-
centrated to dryness. The residue was resolved in 50 mL
CHCl3:MeOH:H2O (5:6:4) and partitioned three times
under basic conditions. The lower layer of CHCl3:
MeOH:H2O (5:6:4) was evaporated in vacuo to yield a
brown residue. The residue was purified by HPLC
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(Senshu Pak Pegasil ODS 30 x 250 mm) and eluted with
MeOH:40 mM KH2PO4 aq. (70:30) to give 19.4 mg bio-
tinylated incednine.

In vitro biotinylated incednine pull-down assay
Bcl-xL-overexpressiong Ms-1 cells were collected and
sonicated twice in IP buffer (50 mM HEPES (pH 7.5),
150 mM NaCl, 2.5 mM EGTA, 1 mM EDTA, 1 mM
DTT, and a protease inhibitor cocktail (Roche, Mann-
heim, Germany)) for 10 s. The cell lysates were centri-
fuged at 10,000 g for 15 min at 4°C. The resulting
supernatants were incubated with biotin (50 nmol) or
biotinylated incednine (50 nmol) and avidin beads at 4°C
for 3 h. The beads were washed three times with
phosphate-buffered saline (PBS). The bound proteins
were eluted with 2 mM biotin in PBS, and concentrated
by a centrifugal filter device (Ultracel (YM-10); Milli-
pore). The resulting proteins were boiled in SDS sample
buffer for 5 min and subjected to western blotting.

Liquid chromatography-tandem mass spectrometry
Incednine binding proteins purified using biotinylated
incednine / avidin beads, and flag-tagged incednine (see
Additional file 4) / anti-Flag antibody were anaylzed by
liquid chromatography-tandem mass spectrometry (LC–
MS/MS) system as previously described, respectively
[44,45].

Additional files

Additional file 1: Validation work for eIF4A3, PDI, PP2A and Hsp70.

Additional file 2: Proteins computationally predicted to bind to
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Additional file 3: A stucture of biotinylated incednine.

Additional file 4: Preparation of Flag-tagged Incednine [46,47].

Authors’ contributions
YS and MI designed the study and analyzed the data. HK, HH, MN and YF
performed the experiments. YS, MI and HK wrote the paper. YF synthesized
biotinylated incednine. AI, MY, SI, KS, TD, TT, and TN performed MS/MS
analysis. All authors read and approved the final manuscript.

Acknowledgements
This work was supported in part by a Grant program for bioinformatics
research and development from the Japan Science and Technology Agency.
This work was also supported by Grant-in-Aid for Scientific Research (A)
No.23241066 from the Ministry of Education, Culture, Sports, Science and
Technology of Japan.

Author details
1Department of Biosciences and Informatics, Faculty of Science and
Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522,
Japan. 2Chemical Genetics Laboratory, RIKEN Advanced Science Institute, 2-1
Hirosawa, Wako-shi, Saitama 351-0198, Japan. 3National Institute of Advanced
Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo
135-0064, Japan. 4Graduate School of Pharmaceutical Sciences, Tohoku
University, 6-3 Aza-Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
5Department of Applied Chemistry, Tokyo Institute of Technology, 2-12-1
Ookayama, Meguro, Tokyo 152-8552, Japan.
Received: 15 November 2011 Accepted: 5 April 2012
Published: 5 April 2012

References
1. Alaimo PJ, Shogren-Knaak MA, Shokat KM: Chemical genetic approaches

for the elucidation of signaling pathways. Curr Opin Chem Biol 2001,
5:360–367.

2. Zheng XF, Chan TF: Chemical genomics in the global study of protein
functions. Drug Discov Today 2002, 7:197–205.

3. Harding MW, Galat A, Uehling DE, Schreiber SL: A receptor for the
immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase.
Nature 1989, 341:758–760.

4. Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL:
Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-
FK506 complexes. Cell 1991, 66:807–815.

5. Flanagan WM, Corthesy B, Bram RJ, Crabtree GR: Nuclear association of a
T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature
1991, 352:803–807.

6. Nishi K, Yoshida M, Fujiwara D, Nishikawa M, Horinouchi S, Beppu T:
Leptomycin B targets a regulatory cascade of crm1, a fission yeast
nuclear protein, involved in control of higher order chromosome
structure and gene expression. J Biol Chem 1994, 269:6320–6324.

7. Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B, Yoshida M,
Horinouchi S: Leptomycin B inactivates CRM1/exportin 1 by covalent
modification at a cysteine residue in the central conserved region. Proc
Natl Acad Sci U S A 1999, 96:9112–9117.

8. Yoshida M, Kijima M, Akita M, Beppu T: Potent and specific inhibition of
mammalian histone deacetylase both in vivo and in vitro by trichostatin
A. J Biol Chem 1990, 265:17174–17179.

9. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM: Inhibition of
heat shock protein HSP90-pp 60v-src heteroprotein complex formation
by benzoquinone ansamycins: essential role for stress proteins in
oncogenic transformation. Proc Natl Acad Sci U S A 1994, 91:8324–8328.

10. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP: Crystal
structure of an Hsp90-geldanamycin complex: targeting of a protein
chaperone by an antitumor agent. Cell 1997, 89:239–250.

11. Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH:
Identification and structural characterization of the ATP/ADP-binding site
in the Hsp90 molecular chaperone. Cell 1997, 90:65–75.

12. Hart CP: Finding the target after screening the phenotype. Drug Discov
Today 2005, 10:513–519.

13. Nagamine N, Sakakibara Y: Statistical prediction of protein chemical
interactions based on chemical structure and mass spectrometry data.
Bioinformatics 2007, 23:2004–2012.

14. Nagamine N, Shirakawa T, Minato Y, Torii K, Kobayashi H, Imoto M,
Sakakibara Y: Integrating statistical predictions and experimental
verifications for enhancing protein-chemical interaction predictions in
virtual screening. PLoS Comput Biol 2009, 5:e1000397.

15. Futamura Y, Sawa R, Umezawa Y, Igarashi M, Nakamura H, Hasegawa K,
Yamasaki M, Tashiro E, Takahashi Y, Akamatsu Y, et al: Discovery of
incednine as a potent modulator of the anti-apoptotic function of Bcl-xL
from microbial origin. J Am Chem Soc 2008, 130:1822–1823.

16. Michelle L, Cloutier A, Toutant J, Shkreta L, Thibault P, Durand M, Garneau
D, Gendron D, Lapointe E, Couture S, et al: Proteins Associated with the
Exon Junction Complex Also Control the Alternative Splicing of
Apoptotic Regulators. Mol Cell Biol 2012, 32:954–967.

17. Lovat PE, Corazzari M, Armstrong JL, Martin S, Pagliarini V, Hill D, Brown AM,
Piacentini M, Birch-Machin MA, Redfern CP: Increasing melanoma cell
death using inhibitors of protein disulfide isomerases to abrogate
survival responses to endoplasmic reticulum stress. Cancer Res 2008,
68:5363–5369.

18. Didelot C, Lanneau D, Brunet M, Joly AL, De Thonel A, Chiosis G, Garrido C:
Anti-cancer therapeutic approaches based on intracellular and
extracellular heat shock proteins. Curr Med Chem 2007, 14:2839–2847.

19. Lu J, Kovach JS, Johnson F, Chiang J, Hodes R, Lonser R, Zhuang Z:
Inhibition of serine/threonine phosphatase PP2A enhances cancer
chemotherapy by blocking DNA damage induced defense mechanisms.
Proc Natl Acad Sci U S A 2009, 106:11697–11702.

20. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z,
Woolsey J: DrugBank: a comprehensive resource for in silico drug discovery
and exploration. Nucleic Acids Res 2006, 34:D668–D672. Database issue.

http://www.biomedcentral.com/content/supplementary/1472-6769-12-2-S1.pdf
http://www.biomedcentral.com/content/supplementary/1472-6769-12-2-S2.pdf
http://www.biomedcentral.com/content/supplementary/1472-6769-12-2-S3.pdf
http://www.biomedcentral.com/content/supplementary/1472-6769-12-2-S4.pdf


Kobayashi et al. BMC Chemical Biology 2012, 12:2 Page 9 of 9
http://www.biomedcentral.com/1472-6769/12/2
21. Stephens LR, Eguinoa A, Erdjument-Bromage H, Lui M, Cooke F, Coadwell J,
Smrcka AS, Thelen M, Cadwallader K, Tempst P, et al: The G beta gamma
sensitivity of a PI3K is dependent upon a tightly associated adaptor,
p101. Cell 1997, 89:105–114.

22. Engelman JA, Luo J, Cantley LC: The evolution of phosphatidylinositol 3-
kinases as regulators of growth and metabolism. Nat Rev Genet 2006,
7:606–619.

23. Hickey FB, Cotter TG: BCR-ABL regulates phosphatidylinositol 3-kinase-
p110gamma transcription and activation and is required for proliferation
and drug resistance. J Biol Chem 2006, 281:2441–2450.

24. Edling CE, Selvaggi F, Buus R, Maffucci T, Di Sebastiano P, Friess H, Innocenti
P, Kocher HM, Falasca M: Key role of phosphoinositide 3-kinase class IB in
pancreatic cancer. Clin Cancer Res 2010, 16:4928–4937.

25. Ame JC, Spenlehauer C, de Murcia G: The PARP superfamily. Bioessays
2004, 26:882–893.

26. Kim MY, Zhang T, Kraus WL: Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-
laying’ NAD+ into a nuclear signal. Genes Dev 2005, 19:1951–1967.

27. Herceg Z, Wang ZQ: Functions of poly(ADP-ribose) polymerase (PARP) in
DNA repair, genomic integrity and cell death. Mutat Res 2001, 477:97–
110.

28. Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner
EF: PARP is important for genomic stability but dispensable in apoptosis.
Genes Dev 1997, 11:2347–2358.

29. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA: DNA repair
pathways as targets for cancer therapy. Nat Rev Cancer 2008, 8:193–204.

30. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB,
Santarosa M, Dillon KJ, Hickson I, Knights C, et al: Targeting the DNA repair
defect in BRCA mutant cells as a therapeutic strategy. Nature 2005,
434:917–921.

31. Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, Wang H, Sandler A,
Johnson DH, Colevas AD, et al: Inhibition of poly(ADP-ribose) polymerase
enhances cell death and improves tumor growth delay in irradiated
lung cancer models. Clin Cancer Res 2007, 13:3033–3042.

32. Veuger SJ, Curtin NJ, Richardson CJ, Smith GC, Durkacz BW:
Radiosensitization and DNA repair inhibition by the combined use of
novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose)
polymerase-1. Cancer Res 2003, 63:6008–6015.

33. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG,
Dawson TM, Dawson VL: Mediation of poly(ADP-ribose) polymerase-1-
dependent cell death by apoptosis-inducing factor. Science 2002,
297:259–263.

34. Cregan SP, Dawson VL, Slack RS: Role of AIF in caspase-dependent and
caspase-independent cell death. Oncogene 2004, 23:2785–2796.

35. Hong SJ, Dawson TM, Dawson VL: Nuclear and mitochondrial
conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol
Sci 2004, 25:259–264.

36. Menendez JA, Lupu R: Fatty acid synthase and the lipogenic phenotype
in cancer pathogenesis. Nat Rev Cancer 2007, 7:763–777.

37. Brusselmans K, De Schrijver E, Verhoeven G, Swinnen JV: RNA interference-
mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces
growth inhibition and apoptosis of prostate cancer cells. Cancer Res 2005,
65:6719–6725.

38. Chajes V, Cambot M, Moreau K, Lenoir GM, Joulin V: Acetyl-CoA
carboxylase alpha is essential to breast cancer cell survival. Cancer Res
2006, 66:5287–5294.

39. Wang C, Xu C, Sun M, Luo D, Liao DF, Cao D: Acetyl-CoA carboxylase-
alpha inhibitor TOFA induces human cancer cell apoptosis. Biochem
Biophys Res Commun 2009, 385:302–306.

40. Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K,
Verhoeven G, Swinnen JV: Chemical inhibition of acetyl-CoA carboxylase
induces growth arrest and cytotoxicity selectively in cancer cells. Cancer
Res 2007, 67:8180–8187.

41. Milgraum LZ, Witters LA, Pasternack GR, Kuhajda FP: Enzymes of the fatty
acid synthesis pathway are highly expressed in in situ breast carcinoma.
Clin Cancer Res 1997, 3:2115–2120.

42. Swinnen JV, Vanderhoydonc F, Elgamal AA, Eelen M, Vercaeren I, Joniau S,
Van Poppel H, Baert L, Goossens K, Heyns W, et al: Selective activation of
the fatty acid synthesis pathway in human prostate cancer. Int J Cancer
2000, 88:176–179.

43. Chang C-C, Lin C-J: LIBSVM: A library for support vector machines. ACM
Trans Intell Syst Technol 2011, 2:1–27.
44. Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, Ishigami K,
Watanabe H, Kitahara T, Yoshida T, Nakajima H, et al: Spliceostatin A
targets SF3b and inhibits both splicing and nuclear retention of pre-
mRNA. Nat Chem Biol 2007, 3:576–583.

45. Natsume T, Yamauchi Y, Nakayama H, Shinkawa T, Yanagida M, Takahashi N,
Isobe T: A direct nanoflow liquid chromatography-tandem mass
spectrometry system for interaction proteomics. Anal Chem 2002,
74:4725–4733.

46. Tornøe CW, Chirstensen C, Meldal MJ: Org Chem 2002, 67:3057–3064.
47. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB: Angew Chem Int Ed 2002,

41:2596–2599.

doi:10.1186/1472-6769-12-2
Cite this article as: Kobayashi et al.: Comprehensive predictions of target
proteins based on protein-chemical interaction using virtual screening
and experimental verifications. BMC Chemical Biology 2012 12:2.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Computational prediction of target proteins for incednine
	Clustering of computationally predicted proteins
	Experimental verification

	Discussion
	Conclusions
	Methods
	Training datasets
	Feature vectors
	Statistical prediction method for &b_k;protein-&e_k;&b_k;chemical&e_k; interaction
	Support vector machines
	Cell culture
	Antibodies
	Western blotting
	Preparation of incednine and biotinylated incednine
	In vitro biotinylated incednine &b_k;pull-&e_k;&b_k;down&e_k; assay
	Liquid &b_k;chromatography-&e_k;&b_k;tandem&e_k; mass spectrometry

	Additional files
	show [ss]
	Acknowledgements
	Author details
	References

