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Abstract

Background: Because of the increasingly concern of consumers and public policy about problems for environment
and for public health due to chemical pesticides, the search for molecules more safe is currently of great
importance. Particularly, plants are able to fight the pathogens as insects, bacteria or fungi; so that plants could
represent a valuable source of new molecules.

Results: It was observed that Medicago truncatula seed flour displayed a strong toxic activity towards the adults of
the rice weevil Sitophilus oryzae (Coleoptera), a major pest of stored cereals. The molecule responsible for toxicity
was purified, by solvent extraction and HPLC, and identified as a saponin, namely 3-GlcA-28-AraRhaxyl-
medicagenate. Saponins are detergents, and the CMC of this molecule was found to be 0.65 mg per mL. Neither
the worm Caenorhabditis elegans nor the bacteria E. coli were found to be sensitive to this saponin, but growth of
the yeast Saccharomyces cerevisiae was inhibited at concentrations higher than 100 μg per mL. The purified
molecule is toxic for the adults of the rice weevils at concentrations down to 100 μg per g of food, but this does
not apply to the others insects tested, including the coleopteran Tribolium castaneum and the Sf9 insect cultured
cells.

Conclusions: This specificity for the weevil led us to investigate this saponin potential for pest control and to
propose the hypothesis that this saponin has a specific mode of action, rather than acting via its non-specific
detergent properties.

Keywords: Saponin, Insect, Medicago truncatula, Sitophilus oryzae
Background
Chemical pesticides in general, and insecticides in par-
ticular, are increasingly used around the world but are
also increasingly stigmatized because of their persistence
and their toxicity to non-target organisms (impacting
amphibians, aquatic wildlife, beneficial insects, such as
bees and ladybirds, and even causing mortality among
farmers, particularly in developing countries [1-3]). Crop
protection against two very important pests, namely
cereal weevils and aphids, is currently carried out almost
exclusively by chemical treatments. Some alternative
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reproduction in any medium, provided the or
methods exist in the fight against these insects, but they
are either much less effective or prohibitively expensive
compared with chemical control.
Chemical treatments used to protect stored products

are the source of the majority of chemical residues in
cereals, subsequently found in processed products. High
doses of these residues can be dangerous for consumers.
However, the presence of insects or mites is the main
cause of refusal, for non-compliance with health regula-
tions, of grain deliveries to the food industry. Hence, it is
vital to find new molecules which would have a much
less deleterious impact on the environment. One of the
most promising sources of such compounds is probably
plants, which have developed many ways to fight against
insects, as well as against fungal and bacterial attacks,
and one of these is the use of insecticidal molecules.
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These molecules may be found in others organisms, such
as in spiders or scorpion venom, but then they are gener-
ally toxic to mammals as well. The search for insecticidal
compounds in plants, and specifically within those plants
that are consumed by mammals, could be a valuable
means of developing biopesticides for sustainable and
healthy agriculture.
Numerous molecules have yet to be identified in

plants in terms of their ability to counter insect, fungal
or bacterial attacks. These molecules could be of a pro-
teic nature, including thionins, defensins, lipid transfer
proteins, snakins or protease inhibitors. They may also
be produced by the secondary metabolism of plants, and
many defense molecules are of an alkaloid, saponin or
flavonoid type (for review see [4]).
One of the most promising insecticidal molecules is

the PA1b peptide, extracted from Legume seeds, which
constitutes the main defence molecule against insects in
these seeds [5]. PA1b is toxic for some insects, such as
cereal weevils, but resistant strains of weevils have been
found to exist [6]. However, it is known that the seeds
from Medicago truncatula contain molecules able to kill
both susceptible and PA1b-resistant strains of weevils
[7]. By purification of the entomotoxic compound, we
found that M. truncatula seeds are mainly protected
against weevil attack by a specific saponin, rather than
by the PA1b peptide, but this toxic effect is currently
restricted to the rice weevil among insects.
Methods
Biological material and toxicity assays
The extracts used for the toxicity assays were flour of
the M. truncatula seeds, solvant-extracted flour and
purified saponin. All these fractions have been tested on
S. oryzae, whereas all other organisms were assayed with
the purified saponin only.
Rice weevils (Sitophilus oryzae, Coleoptera) were

reared on wheat seeds at 27.5°C and 70% RH. Tests
and survival analysis were performed on adults feeding
on food pellets (composed of wheat flour and water)
incorporating the tested fraction, as described in detail
in [7]. LT50 values were calculated using the SIMFIT
software (http://www.simfit.man.ac.uk). The tests of the
juvenile stages of Sitophilus oryzae could not be done
because the larvae of weevils live inside the wheat grain
and could not be grown outside, so we do not have an
artificial diet where we can incorporating the toxin.
The red flour beetle, Tribolium castaneum (Coleoptera)
Tests were performed, by mixing the saponin into the
standard diet (wheat flour 95%, yeast extract 5%). Then,
three groups of 20 adults were deposited on cages, and
the mortality was recorded every day.
The aphid Acyrthosiphon pisum (Hemiptera)
Growth and toxicity assays were carried out according to
[8]. Briefly, UV-sterilized Parafilm sachets enclosing 500
μL of an artificial diet were made under sterile condi-
tions and placed on a PVC ring. A group of 20 neonate
larvae were deposited on day 0 on diet containing or not
the tested molecule (three groups per condition). The
mortality was then recorded every day.
The mosquito Aedes aegypti was assayed on two

strains: the laboratory strain Bora-Bora, susceptible to all
insecticides, and a strain selected from Bora-Bora which
is tolerant to Bti Cry toxins (LiTOX strain, [9]). Mosqui-
toes were reared in standard insectary conditions (27°C,
16 h/8 h light/dark period and 80% relative humidity).
Larvae were reared in tap water and fed with standard
larval food (hay pellets). Bioassays were performed, in
triplicate, in a final volume of 200 μL on 10 calibrated
2nd-instar larvae, with saponin concentrations of 0, 25,
250 and 1000 μg/mL. Mortality was recorded at 24 h
and 48 h. Because data were not normally distributed,
non-parametric Kruskal-Wallis ranked tests were used to
test the strain and dose effects on larval mortality. In
addition, Mann–Whitney one-tailed tests were used to
compare the mortality, at each dose and each time, with
that of the control using R software version 2.5 (R Devel-
opment Core Team 2005).
Spodoptera frugiperda Sf9 cells were grown at 27°C

in Grace’s culture medium, supplemented with 10%
foetal calf serum (FCS) and with 10 mg.ml-1 gentamicin.
Sf9 cells were seeded, in 96-well plates, 24 h prior to the
experiments (10 000 cells / well) and were exposed to in-
creasing saponin concentrations for another 24 h or
48 h. Cell viability was determined using the CellTiter-
Blue Viability Assay (Promega), according to the manu-
facturer’s instructions. After addition of the dye, the cells
were incubated at 27°C for 4 h. The absorbance, at 570
and 600 nm, was then measured using a microplate
reader (MR 7000, Dynatech Laboratories Inc., USA).
Cænorhabditis elegans worms, from the N2 wild type

strain, were cultured in liquid growth medium (KH2PO4

17.2 mM; Na2HPO4 16.8 mM; NaCl 85.6 mM; MgSO4

1 mM, cholesterol 26 μM, with OP50 E. coli as the food
source) in 96-well plates, under constant agitation. Two
adult worms were dispensed in each well using a COPAS
BIOSORT robot from Union Biometrica (Massachussets,
USA), which allows sorting and dispensing of worms
according to their size and optical density. They were
grown for 7 days at 15°C. The wells also contained in-
creasing concentrations of the tested molecule. The off-
spring were observed on each day of the growing period
to evaluate the effects of the molecule in terms of growth
retardation and toxicity.
E. coli DH5α was grown in LB media at 37°C. For tox-

icity assays, the saponin was added directly to 1 mL of

http://www.simfit.man.ac.uk
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the media and bacterial growth was monitored by
recording the OD at 600 nm for 10 h, starting at t = 0
with an OD=0.01.
The yeast S. cerevisiae, strain BY4742, was grown on

liquid media (YNB; 20 g.L-1 glucose; 0.02 g.L-1 His;
0.06 g.L-1 Leu; 0.04 g.L-1 Lys) at 30°C. For toxicity assays,
the saponin was added directly to 1 mL of the media and
yeast growth was monitored by recording the OD at
600 nm for 30 h, starting at t = 0 with an OD=0.01.

Purification of the saponin
We used seeds from Medicago truncatula cv. Jemalong.
Seeds were crushed in a Warring blender and sieved
through a 0.4 mm mesh to separate the cuticles from
the flour. The flour was submitted to successive extrac-
tions: first, it was extracted in H2O/EtOH (80/20, 10 mL
for 1 g of flour) for 2 h, at room temperature and with
stirring, and then centrifuged for 10 min at 10 000 × g.
The supernatant was dried under vacuum in a Buchi
Rotavapor. The resulting powder was resuspended in
H2O/ACN (40/60, 10 mL for 0.1 g of powder), and im-
mediately centrifuged for 10 min at 10 000 × g. The
supernatant was again dried under vacuum.
The powder was resuspended in H2O/ACN (40/60), at

approximately 15 mg.mL-1, and filtered on a 0.45 μm
sterile filter. The molecules of the extract were separated
by RP-HPLC. The extract was injected into a C18 column
(250 × 25 mm, 5 μm, Phenomenex) on an Agilent 1200
HPLC apparatus. The flow was 3.5 mL.min-1. The gradi-
ent was H2O+0.04%TFA (solvent A) / ACN +0.04% TFA
(solvent B) 90/10 for 5 min, then 60% solvent B for
25 min. The elution was monitored using a diode array
detector at 210 nm. Each fraction harvested was
lyophilized.
The fraction containing entomotoxic activity was resus-

pended in H2O, and then injected in the same column
with an elution under isocratic conditions (solvent B
30%). Each fraction harvested was lyophilized and stored
dry at −20°C until required.

Mass spectrometry
All of the mass spectra were obtained using a Thermo
LCQ advantage ion –trap spectrometer equipped with
an electrospray ionization source. Both positive and
negative-ion mass spectra were acquired. Positive-ion
ESI was performed using an ion source voltage of
−4.0 kV and a capillary offset voltage of 42 V. Nebuliza-
tion was aided by a coaxial nitrogen sheath gas provided
at a pressure of 60 psi and desolvation was aided by the
use of a nitrogen counter current gas at a pressure of
12 psi. The capillary temperature was set at 200°C.
Negative-ion ESI was performed using an ion source

voltage of 4.0 kV and a capillary offset voltage of −86 V.
Again, nebulization was aided by a coaxial nitrogen
sheath gas provided at a pressure of 60 psi and desolva-
tion was aided by the use of a nitrogen counter current
gas at a pressure of 12 psi. The capillary temperature
was set at 200°C.
Mass spectra were recorded over the range 50–2000

m/z. Tandem mass spectra were obtained using auto-
mated MS/MS and MS3. MS/MS was performed by
isolating the base peak (parent ion) above m/z 1087
and using an isolation width of 2.0, a fragmentation
amplitude of 0.6, a threshold set at 15,000 and the ion
charge control switched on with the maximum acquired
time set at 100 ms. The MS3 was performed by isolating,
in the same conditions, the parent ion, initially at m/z
1087 and then we performed the isolation and the frag-
mentation of the product ion at m/z 911.

NMR spectroscopy
1 and 13C NMR spectra were recorded on a 500-MHz
Brucker Avance NMR spectrometer equipped with a z
axis field gradient unit, using CD3OD as the solvent for
measurement. Conventional 2D 1H-1H experiments DQF-
COSY (double quantum filtered correlation spectroscopy),
HOHAHA (homonuclear Hartman Hahn) NOESY (nu-
clear overhauser effect spectroscopy) and 2D inverse
detected 1H-13C experiments HSQC (heteronuclear single
quantum coherence) [10], HMBC (heteronuclear multiple
bond coherence) [11] and HMQC (heteronuclear multiple
quantum coherence) [12] were all performed at 293K.
The data were processed and analyzed using the Topsin
software package.

Acid hydrolysis of saponin
The saponin (4 mg) was treated with 2 mL of 2 N HCl
(methanol-H2O, v/v 1:1) under conditions of reflux, at
90°C, for 3 hours. The mixture obtained was extracted
with CH2Cl2 three times to separate the agylcone part.
The CH2Cl2 layer was dried, then the powder was resus-
pended in H2O/ACN (20/80). The aglycone was purified
by RP-HPLC. The extract was injected into a C18 column
(250 x 4.1 mm, 3 μm, Phenomenex). The flow was 1 mL.
min-1. The gradient was H2O+ 0.04%TFA (solvent A) /
ACN +0.04% TFA (solvent B) 70/30 to 0/100 for 40 min.
1.25 mg of the aglycone part were retained in order to
perform biological assays.

Protein determination
Protein was measured by the bicinchoninic acid proced-
ure, developed by Pierce, with BSA as a reference.

Ose determination
1 mL of anthrone solution (200 mg in 100 mL H2SO4)
was added to 0.5 mL of the tested solution on ice. The
tubes were covered and vortexed, then the reaction mix-
ture was boiled for 10 min. After cooling the tubes, the
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OD was read at 585 nm and glucose was used as a
reference.

Sterol visualization
1–2 mg of the dried compound were dissolved in 2 mL
of CHCl3, followed by the addition of 2 mL of concen-
trated H2SO4. After a few minutes, the CHCl3 fraction
becomes red if sterols are present.

CMC determination
The CMC (Critical Micelle Concentration) was deter-
mined according to [13]. Briefly, 1 μL of 1,6-diphenyl –
1,3,5 – hexatriene (DPH), solubilized in THF, was added
to 2 mL of increasing doses of the tested compound in
10 mM MES pH 6. After a 30 min incubation in the dark,
fluorescence was determined with an excitation wave-
length of 358 nm and an emission wavelength of 430 nm.

Results
Purification of the molecule responsible for toxicity
Flour from the seeds of M. truncatula cv. Jemalong dis-
plays a strong entomotoxic activity against S. oryzae rice
weevils (Table 1), displaying a LT50 of 7.61 +/− 0.28 days
at a dose of 100 mg per g of food. On the basis of this,
the toxic compound was purified and the purification
steps were followed by biological tests on the rice weevil.
Sequential extractions in two different solvents (EtOH
20% followed by an extraction in ACN 60%) causes the
resulting fraction to lose 89% of the flour weight while
retaining most of the toxic activity (LT50 of 3.79 +/−
0.13 days at a dose of 20 mg per g of food for the result-
ing supernatant, with only slight residual toxicity in the
Table 1 Lethal time 50 (LT50) for different fractions of
Medicago truncatula seed flour on Sitophilus oryzae

Fractions amount per g of food LT50 +/− SEM (day)

M. truncatula seed flour 10 mg > 20

50 mg 11.03 +/− 0.319

100 mg 7.61 +/− 0.28

250 mg 5.33 +/− 0.2

After solvents extraction 20 mg 3.79 +/− 0.13

Purified saponin 20 μg not toxic

(3-GlcA-28-AraRhaxyl-
medicagenate)

100 μg 16.57 +/− 1.89

200 μg 12.96 +/− 0.52

400 μg 9.59 +/− 0.39

800 μg 8.42 +/− 0.25

1200 μg 6.23 +/− 0.24

1600 μg 5.63 +/− 0.28

The indicated amount of each powder was added to one gram of wheat flour.
The food produced was given to weevils and mortality recorded every day for
20 days.
20% EtOH and 60% ACN pellets). The HPLC chromato-
gram of this fraction is presented in Figure 1A, and the
only toxic fraction was harvested at retention times be-
tween 22.6 and 23.8 minutes. Further purification, by
isocratic HPLC elution, of this fraction (Figure 1B)
resulted in the purification of a single peak at Rt = 18.30
minutes. This isolated peak is the only HPLC fraction
displaying an entomotoxic activity, with a LT50 of 12.96
+/− 0.52 days at a dose of 200 μg per g of food. The
toxic effect was visible at a dose down to 100 μg per g
of food (Table 1). The yield of purified compound was
approximately 1.25 mg of compound per g of flour
(0.12%).
Characterization of the toxic molecule
To identify the toxic compound, a mass spectrometry
analysis revealed a single (M-H) - ion peak at m/z
1087.33 (Figure 2A). A protein assay revealed that the
Figure 1 Chromatograms of Medicago truncatula seed extract.
A. Injection into a C18 column (250 × 25 mm, 5 μm, Phenomenex)
on an Agilent 1200 HPLC apparatus. The flow was 3.5 mL.min-1. The
gradient was H2O+ 0.04%TFA (solvent A) / ACN +0.04% TFA (solvent
B) 90/10 for 5 min, then 60% solvent B for 25 min. The elution was
monitored using a diode array detector at 210 nm. B. The fraction
purified in A was injected into the same column with an elution
under isocratic conditions (solvent B 30%). Peaks containing
entomotoxic activity are indicated.
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molecule is not a peptide; moreover, the toxic activity
was not lost after boiling the molecule for 10 minutes.
Assays with anthrone and concentrated H2SO4 were both
positive, indicating that the compound was at least partly
made up of sugar and sterol. Next we hypothesized that
the molecule belonged to the saponin family, and both
the ESI/MS/MS analyses (Figure 2B, 2C) and the 1H and
13C NMR spectroscopic data of the entomotoxin (Table 2)
compound were found to be similar to those reported for
a saponin named 3GlcA-28-AraRhaxyl-medicagenate
[14]. The entomotoxin compound and the reported sap-
onin [14] have the same 1H and 13C chemical shits
(Table 2). MS/MS and MS3 experiments of the two com-
pounds also produce identical fragment ions at m/z 911.3
and at m/z 501.4 (Figure 2B, 2C).
The molecule was, thus, identified as 3-O-[β-D-

glucuronopyranosyl]-28-O-[β-xylopyranosyl(1! 4)-α-L-
rhamnopyranosyl(1! 2)-α-L-arabinopyranoside medica-
genate (its molecular formula is C52H80O24 and its
CAS registry number is 128192-15-4) (Figure 3).
CMC determination of the saponin
The commercial detergent Chaps was used as a control
for the technique. The Chaps CMC was measured as
0.48% (8 mM), identical to that found in the literature
[15]. Figure 4 shows DPH fluorescence associated with
an increasing amount of the purified saponin, leading to
the calculation of a CMC of 0.65 mg.ml-1 (0.6 mM).
Toxicity of the saponin on living organisms
As previously described, the purified saponin is toxic for
rice weevils at a concentration as low as 100 μg per g of
food (Table 1). Then, the saponin was hydrolysed and
the aglycone part of the extraction was confirmed by
mass spectrometry. This lipidic part of the molecule was
Figure 2 Negative-ion ESI-mass and tandem mass spectra of 3-O-[β-D
rhamnopyranosyl (1! 2) - α-L-arabinopyranoside medicagenate (3-G
isotope distribution of the (M-H)- ion at m/z 1087.33, of 3-GlcA-28-AraRhaxy
precursor ion is m/z 1087.3, fragment ion at m/z 911.3 correlates to the los
medicagenate, precursor ion is m/z 911.3, fragment ion at m/z 501.4 correl
and xylose (Ara-Rha-xyl) and thus the fragment ion at m/z 501.4 correspon
found to have no effect on weevil mortality at a concen-
tration of up to 2 mg per g of food.
A biological test was performed on the red flour beetle,

Tribolium castaneum (Coleoptera), displaying no mortal-
ity on adults. Moreover, the adults lay on the flour con-
taining the purified saponin, and the larvaes develop
normally; emergence occurs at the same time as in the
saponin-free control diet.
Using the aphid A. pisum (Hemiptera), the saponin

was tested from 125 to 1000 μg/mL. No mortality was
observed during the test, and it was only at the higher
dose of 1000 μg/mL that larvae were seen to be smaller
and that less honeydew was produced.
Larvae of two strains of the mosquito Ae. aegypti

(Diptera) were assayed at 0, 25, 250 and 1000 μg.mL-1

of saponin. There was no effect associated with the
mosquito strain or the saponin concentration on mor-
tality: even at the highest dose, mortality was no differ-
ent from the control.
We next tested the saponin on an insect cultured cell sys-

tem, the Sf9 cells from Spodoptera frugiperda (Lepidoptera).
We used the Pisum sativum PA1b toxin, at 5 μg.mL-1 ,
as a positive control which led to 100% cell death 24 h
after addition without any disruption of the cell mem-
brane. Using doses of the M. truncatula saponin up to
1000 μg.mL-1, we have demonstrated that cultured cells
were not affected by this toxin as no cell death was
observed 24 or 48 h after addition of the saponin. On
the other hand, an experiment using the commercially
available saponin from Quillara saponaria (SIGMA Ref.
S4521) showed a strong toxic effect, with a DL50 of
1.25 μg.mL-1 and total disruption of the cell membrane
(data not shown).
We tested the susceptibility of Cænorhabditis elegans

worms to the saponin from M. truncatula. Three doses
were tested: 0.02, 0.2 and 2 mg per g of media. For the
-glucuronopyranosyl]-28-O-[β-xylopyranosyl(1! 4)-α-L-
lcA-28-AraRhaxyl-medicagenate). (A) the ESI-mass spectrum of the
l-medicagenate, (B) MS/MS of 3-GlcA-28-AraRhaxyl-medicagenate,
s of glucuronic acid (GlcA), (C) MS3 of 3-GlcA-28-AraRhaxyl-
ates to the sequential loss of sugar substituents arabinose, rhamnose
ds to M-H mass of medicagenic acid.



Table 2 1H et 13C NMR data for the saponin 3-GlcA-28-
AraRhaxyl-medicagenatea obtained in CD3OD at 298K
and 500 MHz

13C ppm 1H ppmAglycone
(medicagenic acid))

1 44.4 2.11 dd
(14.6, 2.3); 1.25b

2 70.6 4.29m

3 86.1 4.08 d (3.5)

4 53.0

5 52.8 1.59b

6 21.0 1.64b, 1.16b

7 33.0 1.76b, 1.54b

8 40.8

9 49.0 1.60b

10 37.1

11 24.3 2.01b, 1.94b

12 123.5 5.32 t (3.2)

13 144.6

14 42.8

15 28.4 1.67b, 1.11b

16 23.4 2.04b, 1.67b

17 47.5

18 42.1 2.93 dd (13.5, 4.3)

19 46.8 1.15b, 1.12b

20 31.4

21 34.3 1.39b, 1.22b

22 33.2 1.34b, 1.31b

23 181.4

24 13.1 1.40 s

25 16.9 1.24 s

26 17.4 0.81 s

27 25.9 1.16 s

28 177.5

29 33.1 0.91 s

30 23.6 0.95 s

GlcA

1 104.9 4.40 d (7.7)

2 74.5 3,27b

3 77,9 3.30 t (9.1)

4 73.0 3.48 t (9.1)

5 76.8 3.36 d (9.1)

6 173.2

Ara

1 93.6 5.69 d (3.5)

2 75.3 3.80 t (4.5)

3 70.5 3.90m

Table 2 1H et 13C NMR data for the saponin 3-GlcA-28-
AraRhaxyl-medicagenatea obtained in CD3OD at 298K
and 500 MHz (Continued)

4 66.7 3.84m

5 62.9 3.91m, 3.49m

Rha

1 101.2 5.03 s

2 71.8 3.86b

3 70.8 3.47b

4 83.1 3.55m

5 68.5 3.72m

6 17.3 1.28 d (6.2)

Xyl

1 106.5 4.49 d (7.7)

2 75.5 3.19 dd (9.1, 5.2)

3 76.8 3.37 t ((9.1)

4 70.7 3.56m

5 67.1 3.84b, 3.18 dd (11.5, 9.4)
a Italic letters indicate the multiplicity of the NMR peaks and J values are in
parentheses (Hz).
b overlapping signals.
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three doses, no embryonic, larval or adult mortality was
observed. There were no effects on adults, and it was
only at the highest dose that we observed a delay in lar-
val development of up to one and a half developmental
stages (data not shown).
The growth rate of E. coli bacteria was measured in the

presence of the saponin. For doses up to 2 mg.mL-1, no
differences were observed in bacterial growth in the pres-
ence or absence of the saponin. By contrast, the saponin
strongly affected the growth of the yeast Saccharomyces
cerevisiae. The results presented in Figure 5 clearly show
an inhibition of yeast growth, compared to the control,
for doses higher than 0.1 mg.mL-1, with total growth in-
hibition at 0.25 mg.mL-1 and higher concentrations.

Discussion
With increasing concern about the effects of chemical
pesticides on the environment and on human health, the
search for molecules with pesticidal activity but without,
or at least with only minor, adverse effects becomes
more and more important. A number of molecules of
plant origin with antimicrobial or antifungal activity are
currently available, but only a few molecules have in-
secticidal properties, especially against insects which
damage stored products, such as cereal weevils.
The observation that M. truncatula seed flour had a

rapid lethal effect on the rice weevil, and that this mortal-
ity was not due to PA1b because the PA1b resistant strain
was killed as well [7], led us to investigate this Legume
seed further. We succeeded in isolating the entomotoxic



Figure 3 3-O-[β-D-glucuronopyranosyl]-28-O-[β-xylopyranosyl(1! 4)-α-L-rhamno-pyranosyl (1! 2)- α-L-arabinopyranoside medicagenate
structure (MW: 1088.5 g/mol). GlcA, Ara, Rha, Xyl indicate respectively glucuronic acid, arabinose, rhamnose and xylose sugar moieties.
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compound, which was found to belong to the saponin
family and was identified as 3-GlcA-28-AraRhaxyl-medi-
cagenate. This compound has already been described in
the literature [14], but without any demonstration of its
toxic properties, although its potential use against pea
aphids has been previously suggested [16]. The use of
saponins as natural insecticides is an idea that is gaining
importance [17,18]. As with other saponins, 3-GlcA-28-
AraRhaxyl-medicagenate displays detergent properties
and has a CMC of about 0.6 mM. This property could
explain the toxicity of the M. truncatula saponin on
yeast, even though toxicity occurs at concentrations
below the CMC. Indeed, many saponins display antifun-
gal activities [19] and, to date, the mechanism of action
of these compounds on fungi has been found to be due
to the detergent function, via an interaction with a
sterol in the membrane [20]. Although nematocidal
Figure 4 DPH fluorescence in increasing 3-GlcA-28-AraRhaxyl-medicage
activity of saponins from Medicago spp. has been
observed at relatively low doses (0.5 mg.mL-1 of a mix-
ture of saponin isoforms) on Xiphinema [21], the puri-
fied saponin of M. truncatula is not toxic for the
nematode C. elegans.
However, the most promising and interesting property

of the M. truncatula saponin remains its activity
against the rice weevil S. oryzae, even at relatively low
concentrations. Some examples of the insecticidal activ-
ities of members of the saponin family have already
been described: the anti-feeding activity of a pea sap-
onin on weevils [22]; the action of triterpenoid saponin,
from Barbarea vulgaris, on Plutella xylostella [23]; and
the non-specific toxic effects of different saponins on
Spodoptera littoralis and Acyrthosiphon pisum [24].
Other saponins have been described as being lethal for
rice weevils, but at higher doses [25,26].
nate concentrations. The calculated CMC was 0.65 mg.ml-1 (0.6 mM).



Figure 5 Effect of 3-GlcA-28-AraRhaxyl-medicagenate on the growth of the yeast Saccharomyces cerevisiae. Yeast growth was followed by
the absorbance, at 600 nm, of 1 mL of yeast culture in YNB media. An increasing concentration of saponin from M. truncatula was added to the
media; 0 mg.mL-1 (▲); 0.025 mg.mL-1 (�); 0.05 mg.mL-1 (x); 0.1 mg.mL-1 (�); 0.25 mg.mL-1 (❏); 0.5 mg.mL-1 (△;); 1.5 mg.mL-1 (+).
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The most surprising result is that S. oryzae is the only
tested insect found to be sensitive to the saponin. Even
T. castaneum, another coleopteran, and Sf9 cultured
cells were fully non-susceptible to a high saponin con-
centration. This last result demonstrated that 3-GlcA-
28-AraRhaxyl-medicagenate is not cytotoxic for Sf9.
However, several saponins display cytotoxic properties
against cancer cells and are considered as potential anti-
cancer agents [27,28]. The saponins from Q. saponaria,
which rapidly killed Sf9 cells, also displayed cytotoxic ac-
tivity [29].
The saponin under investigation here has a specific

toxicity on rice weevils and not on other insects. Inter-
estingly, Aedes aegyptii is susceptible to Q. saponaria
saponin at a dose of 0.8 mg.mL-1 [30], and to other sapo-
nins [31], but not to the M. truncatula saponin. Further-
more, in M. truncatula seeds, a number of other
saponins exist [14,32] and, out of all the HPLC fractions
obtained, only one fraction, and even only one saponin
molecule, displayed toxicity on weevils. This high specifi-
city of 3-GlcA-28-AraRhaxyl-medicagenate for the rice
weevil suggests that the mechanism of action could not
be explained simply by a detergent action, and that a
more specific mechanism, putatively involving the exist-
ence of a specific receptor on the insect, may exist. Al-
though the antifungal activity of saponins seems to be
due to an interaction with membrane sterols, a number
of mechanisms of action for the other biological activities
of saponins have been suggested.
The next step in this investigation will be to deter-

mine the precise mode of action of the saponin on the
rice weevil. This could open the way to the discovery of
a new target for bioinsecticides. The high specificity of
3-GlcA-28-AraRhaxyl-medicagenate for rice weevils,
together with a relatively low lethal concentration and
the absence of any effects on other organisms, such as
bacteria or nematodes, are interesting properties in the
goal to combat weevils during cereal storage using low
doses.
Conclusions
The flour from Medicago truncatula seeds was found to
be highly toxic for the rice weevil Sitophilus oryzae. The
insecticidal compound was purified and identified as a
saponin, 3-GlcA-28-AraRhaxyl-medicagenate. The mol-
ecule displayed an antifungal activity, but no bacterial or
nematocidal toxicity. However, the most important result
is that 3-GlcA-28-AraRhaxyl-medicagenate induced mor-
tality in the rice weevil, but not in the other tested
insects, at doses down to 0.1 mg.ml-1, suggesting a
mechanism of action involving a specific receptor
present in weevils.
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